
End-to-End
Spring 2024

cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io

Today

● Putting everything together…

● But let’s start with a gap we left – which is important for end-to-end
operation – why do hosts sometimes get private addresses assigned when
they need to access the Internet?

● Then - step through end-to-end operation!

NAT - network address translation.

Recall: IPv4 addressing.

● We have 232 IPv4 addresses.

● Each host needs a unique IP address.

● We have a lot more than 232 devices that need an IP address.

● You probably have at least two devices with you right now!

Recall: Private IP addresses.

● IANA allocated ranges for use in networks that don’t require Internet access.
○ 192.168.0.0/16
○ 10.0.0.0/8
○ 172.16.0.0/12

● You’ll see these addresses in use within your home network, and most
networks that you connect to.

● But… you do need Internet access!

Why do we need NAT?

S1

R1 ISP

DHCP request: Hi! I’m a
new router connecting to
this ISP – please provide

me with an address.

R0

Why do we need NAT?

S1

R1 ISP

DHCP request: Hi! I’m a
new router connecting to
this ISP – please provide

me with an address.

R0

DHCP response:
Your address is 42.40.1.32/24 and
your default gateway is 42.40.1.1.

The DNS server is 44.1.2.3.

Why do we need NAT?

S1

R1 ISP

DHCP request: Hi! I’m a
new router connecting to
this ISP – please provide

me with an address.

R0

DHCP response:
Your address is 42.40.1.32/24 and
your default gateway is 42.40.1.1.

The DNS server is 44.1.2.3.

DHCP request:
Hi! I’m a new host connecting to this

network – please provide me with
an address.

Why do we need NAT?

S1

R1 ISP

DHCP request: Hi! I’m a
new router connecting to
this ISP – please provide

me with an address.

R0

DHCP response:
Your address is 42.40.1.32/24 and
your default gateway is 42.40.1.1.

The DNS server is 44.1.2.3.

DHCP request:
Hi! I’m a new host connecting to this

network – please provide me with
an address.

R1 only has one
public address!

Sharing an External IP Address

● Idea: can we have a way to be able to use private IP addresses within a
network – but share a single Internet-accessible IP address?

● Network Address Translation (NAT) – Port Address Translation.
○ Provides a way to have many hosts share a single public address.
○ Requires us to introduce Layer 4 awareness on routers that are “hiding” multiple hosts

behind them.

● Different modes of NAT:
○ Sharing IP addresses requires port address translation (PAT).
○ Simpler modes of NAT that allow 1:1 address translation – e.g., 10.0.0.1 → 42.0.2.1 and

10.0.0.2 → 42.0.2.2.
○ PAT is the most complex, and widely used NAT mode.

Questions?

How does NAT work?

● Host A sends a packet to a destination address on the Internet, which has a
specific Layer 4 protocol with source and destination port.

● The router performing NAT (doing translation) keeps state of the L4 (TCP,
UDP) connections that are in flight.

● The combination of <IP src, IP dst, protocol, TCP/UDP src
port, TCP/UDP dst port> uniquely identifies a connection.

Operation of NAT

S1

R1 InternetR0

S2

google
.com

192.0.2.42

192.0.2.42

142.250.191.78

142.250.191.78 TCP 32768 80

● Source host is unaltered – builds a packet as usual.

42.40.1.32

Operation of NAT

S1

R1 InternetR0

S2

google
.com

192.0.2.42

42.40.1.32

142.250.191.78

142.250.191.78 TCP 32768 80

● Router performing NAT changes the source IP address to the public address.

42.40.1.32

Operation of NAT

S1

R1 InternetR0

S2

google
.com

192.0.2.42

42.40.1.32

142.250.191.78

142.250.191.78 TCP 32768 80

● Router performing NAT stores state for the connection.

42.40.1.32

Original 5-tuple New 5-tuple

Src IP: 192.0.2.42
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Src IP: 42.40.1.32
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Operation of NAT

S1

R1 InternetR0

S2

google
.com

192.0.2.42

192.0.2.42

142.250.191.78

142.250.191.78 TCP 32768 80

● Return packets are mapped back using the NAT table.

42.40.1.32

Original 5-tuple New 5-tuple

Src IP: 192.0.2.42
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Src IP: 42.40.1.32
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Modifying TCP source port…

S1

R1 InternetR0

S2

google
.com

192.0.2.42

42.40.1.32

142.250.191.78

142.250.191.78 TCP 32768 80

● What happens if we have two flows to the same destination with the same
source port?

42.40.1.32

Original 5-tuple New 5-tuple

Src IP: 192.0.2.42
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Src IP: 42.40.1.32
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 48290
Destination Port: 80

Operation of NAT

S1

R1 InternetR0

S2

google
.com

192.0.2.42

192.0.2.42

142.250.191.78

142.250.191.78 TCP 32768 80

● Return packets are mapped back using the NAT table.

42.40.1.32

Original 5-tuple New 5-tuple

Src IP: 192.0.2.42
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 32768
Destination Port: 80

Src IP: 42.40.1.32
Dst IP:
142.250.191.78
Protocol: TCP
Source Port: 48290
Destination Port: 80

Questions?

NAT: Expectation of Routers

● Ability to modify packets as they are forwarded:
○ IP source address – hides the private addressing in the network.
○ TCP source port – handles the case where two different hosts are contacting the same

remote address (e.g., google.com:80).

● A connection state table – means the router performing NAT must be aware
of each TCP and UDP flow that are traversing the router.

● This increases the complexity of packet forwarding – needs more cycles, and
memory for each flow.
○ NAT is therefore performed as close to the edge of the network as possible (at your home

router!).

Where is NAT used?

● Small scale NAT used in almost every network for IPv4.

● As IPv4 addresses ran out – ISPs did not have enough IPv4 addresses for
each customer → Carrier Grade NAT (CGNAT).
○ More complex – many more connections to maintain state for.

● NAT is generally not used for IPv6 – there are enough addresses!

▶ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::422:260d:750e:7dab%en0 prefixlen 64 secured scopeid 0x6
inet 192.168.86.38 netmask 0xffffff00 broadcast 192.168.86.255
inet6 2001:5a8:429e:9f00:4f9:d277:dfe7:1 prefixlen 64 autoconf secured
nd6 options=201<PERFORMNUD,DAD>

NAT: Inbound Connections

● When a router performing NAT gets an inbound connection – where does it
send it?
○ Who is a connection to public address 42.40.1.32 port 80 destined to?

● Breaks the end-to-end principle!

● In order to allow inbound connections, routers performing NAT need port
mapping tables.
○ May be statically specified.
○ Dynamic protocols such as UPnP (Universal Plug-n-Play) and NAT-PMP (NAT Port Mapping

Protocol) allow dynamic configuration of open ports.

Interesting Implications of NAT

● Since NAT breaks the end-to-end principle it is sometimes thought of as
security.
○ Essentially a firewall that by default drops all inbound connections.
○ This is a side effect – and really doesn’t implement a principled security policy.

● Where we don’t use NAT – client privacy might be impacted.
○ Always see the end machine’s IP address at a remote server.
○ Particularly where it is dynamically configured based on the MAC address (IPv6 EUI64) this is

identifiable down to a particular computer.
○ NAT would hide this identity.
○ Alternate solutions like IPv6 temporary/privacy addresses.

Questions?

Putting it all together – End-to-End.

End-to-End Connectivity

● We’ve been working towards this all semester!

● Let’s think about what happens when we:
○ Turn on our computer and plug it into an Ethernet network
○ Type berkeley.edu⏎ into our browser .

● We’ll assume that we don’t need to turn the Internet on from scratch!

Scenario

ISP
CPE R2R1 BerkeleyR1 R2 www

● Let’s think about the following end-to-end network.
● Our host (laptop) connected to an ISP network, that is accessing

www.berkeley.edu.

DNS

http://www.berkeley.edu

Please interrupt me if you have questions as
we step through!

DHCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We connect to an Ethernet network and make a DHCP request.
● The DHCP server responds with an IP address, subnet mask, default gateway

and DNS server.

DNS

DHCP Req.
Broadcast

DHCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We connect to an Ethernet network and make a DHCP request.
● The DHCP server responds with an IP address, subnet mask, default gateway

and DNS server.

DNS

DHCP Req.
Broadcast

DHCP Resp.
Unicast

DHCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We connect to an Ethernet network and make a DHCP request.
● The DHCP server responds with an IP address, subnet mask, default gateway

and DNS server.

DNS

DHCP Req.
Broadcast

DHCP Resp.
Unicast

DHCP
Acknowledge

DHCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We connect to an Ethernet network and make a DHCP request.
● The DHCP server responds with an IP address, subnet mask, default gateway

and DNS server.

DNS

DHCP Req.
Broadcast Address: 192.168.1.2/24, Default Gateway: 192.168.1.1, DNS: 8.8.8.8

DHCP Resp.
Unicast

DHCP
Acknowledge

Starting Our Connection

ISP
CPE R2R1 BerkeleyR1 R2 www

● Now – we want to look up www.berkeley.edu.
○ DNS: Browser makes getaddrinfo call to resolve.

● Kernel: Our DNS server is 8.8.8.8 - which is not local!
○ Host routing table says 0.0.0.0/0 → 192.168.1.1.

DNS

192.168.1.2 192.168.1.1

8.8.8.8

01:ab:cd:ef:42:01

http://www.berkeley.edu

ARP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We need to know where 192.168.1.1 is on our local network – ARP!
● Again, in the kernel – browser does not need to know about this layer.

DNS

192.168.1.2 192.168.1.1

8.8.8.8

ARP
who-has

01:ab:cd:ef:42:01

ARP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We need to know where 192.168.1.1 is on our local network – ARP!
● Again, in the kernel – browser does not need to know about this layer.

DNS

192.168.1.2 192.168.1.1

8.8.8.8

ARP
who-has

ARP is-at

01:ab:cd:ef:42:01

ARP

ISP
CPE R2R1 BerkeleyR1 R2 www

● We need to know where 192.168.1.1 is on our local network – ARP!
● Again, in the kernel – browser does not need to know about this layer.

DNS

192.168.1.2 192.168.1.1

8.8.8.8

ARP
who-has

ARP is-at

ARP Response: IP: 192.168.1.1 MAC: 01:ab:cd:ef:42:01

01:ab:cd:ef:42:01

Building Up Packets: L2

L2 Src: Laptop MAC

L2 Dst: CPE MAC All subsequent packets that are being sent
by the host towards the Internet use the
same Layer 2 source and destination values.

Building Up Packets: L3

L2 Src: Laptop MAC

L2 Dst: CPE MAC
● Fixed L2 headers

L3 Src: Laptop IP

L3 Dst: Internet Host

● Layer 3 (IPv4) source uses the address
assigned by DHCP.

● Layer 3 (IPv4) destination is either
known statically or resolved via DNS.

● NAT may rewrite the L3 headers in flight
– but the host never sees this.

DNS

ISP
CPE R2R1 BerkeleyR1 R2 www

● We are now able to make a DNS request – sending a packet to 8.8.8.8.

DNS

192.168.1.2 192.168.1.1

DNS
www.berkeley.edu. A?

8.8.8.8

01:ab:cd:ef:42:01

http://www.berkeley.edu

DNS

ISP
CPE R2R1 BerkeleyR1 R2 www

● We are now able to make a DNS request – sending a packet to 8.8.8.8.

DNS

192.168.1.2 192.168.1.1

DNS
www.berkeley.edu. A?

8.8.8.8
DNS

Remember: resolving DNS server
may need to go and ask the

authoritative server.

01:ab:cd:ef:42:01

http://www.berkeley.edu

DNS

ISP
CPE R2R1 BerkeleyR1 R2 www

● We are now able to make a DNS request – sending a packet to 8.8.8.8.

DNS

192.168.1.2 192.168.1.1

DNS
www.berkeley.edu. A?

DNS
www.berkeley.edu A
141.193.213.21

8.8.8.8
DNS

Remember: resolving DNS server
may need to go and ask the

authoritative server.

01:ab:cd:ef:42:01

http://www.berkeley.edu
http://www.berkeley.edu

TCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● TCP three-way handshake required to initiate a TCP connection to
www.berkeley.com:80 (well known HTTP port).

● Established by the browser by calling connect on a particular socket to
the address returned by getaddrinfo.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

TCP SYN

TCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● TCP three-way handshake required to initiate a TCP connection to
www.berkeley.com:80 (well known HTTP port).

● Established by the browser by calling connect on a particular socket to
the address returned by getaddrinfo.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

TCP SYN

TCP
SYN+ACK

TCP

ISP
CPE R2R1 BerkeleyR1 R2 www

● TCP three-way handshake required to initiate a TCP connection to
www.berkeley.com:80 (well known HTTP port).

● Established by the browser by calling connect on a particular socket to
the address returned by getaddrinfo.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

TCP SYN

TCP
SYN+ACK

TCP ACK

A note on TCP piggybacking

● We assume there is no TCP piggybacking – i.e., no data being included when
an ACK is returned.

● TCP implementation is typically in the kernel.
○ ACKs are generated in the kernel.

● Applications (HTTP etc.) are in userspace.
○ Application responses are generated in userspace.

● ACKs are often generated before the application has a chance to respond.
○ Kernel creates ACK and schedules the application to run.

● SYN-ACK is the only case where we have information “piggybacked” on
ACKs.
○ Because this is done in the kernel.

Building Up Packets: L4

L2 Src: Laptop MAC

L2 Dst: CPE MAC
● Fixed L2 headers

L3 Src: Laptop IP

L3 Dst: 141.193.213.21
● L3 headers to reach berkeley.edu

L4 Src: <TCP port>

L4 Dst: 80

● L4 destination port is based on the
application being used – 80 for HTTP,

● Source port is either developer specified
or ephemerally allocated by the kernel
(developer specifies :0).

HTTP

ISP
CPE R2R1 BerkeleyR1 R2 www

● Default path / requested in HTTP returns an HTML page.
● This may have other content linked for it (e.g.,)

○ HTTP requests are pipelined across the same TCP connection.

● TCP connection will not immediately be closed.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

GET / HTTP/1.1

HTTP

ISP
CPE R2R1 BerkeleyR1 R2 www

● Default path / requested in HTTP returns an HTML page.
● This may have other content linked for it (e.g.,)

○ HTTP requests are pipelined across the same TCP connection.

● TCP connection will not immediately be closed.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

GET / HTTP/1.1

HTTP/1.1 200 OK

HTTP

ISP
CPE R2R1 BerkeleyR1 R2 www

● Default path / requested in HTTP returns an HTML page.
● This may have other content linked for it (e.g.,)

○ HTTP requests are pipelined across the same TCP connection.

● TCP connection will not immediately be closed.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

GET / HTTP/1.1

HTTP/1.1 200 OK

GET /img.png HTTP/1.1

HTTP

ISP
CPE R2R1 BerkeleyR1 R2 www

● Default path / requested in HTTP returns an HTML page.
● This may have other content linked for it (e.g.,)

○ HTTP requests are pipelined across the same TCP connection.

● TCP connection will not immediately be closed.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

GET / HTTP/1.1

HTTP/1.1 200 OK

GET /img.png HTTP/1.1

HTTP/1.1 200 OK

Building Up Packets: L7

L2 Src: Laptop MAC

L2 Dst: CPE MAC
● Fixed L2 headers

L3 Src: Laptop IP

L3 Dst: 141.193.213.21
● L3 headers to reach berkeley.edu

L4 Src: 32768

L4 Dst: 80
● L4 headers are associated with the TCP

connection.

TCP Payload

● Remember: TCP provides a byte stream
abstraction – so no 1:1 correlation of
packets.

● Application calls read on the socket to
receive the bytes.

L4 view of our HTTP requests

ISP
CPE R2R1 BerkeleyR1 R2 www

● Multiple packets may be required to carry the HTTP requests and responses.
● Remember that there is not a 1:1 correspondence between packets in TCP –

ACK the window size for the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

ACK, seq=17

L4 view of our HTTP requests

ISP
CPE R2R1 BerkeleyR1 R2 www

● Multiple packets may be required to carry the HTTP requests and responses.
● Remember that there is not a 1:1 correspondence between packets in TCP –

ACK the window size for the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

ACK, seq=17

seq=18

seq=19

seq=20

L4 view of our HTTP requests

ISP
CPE R2R1 BerkeleyR1 R2 www

● Multiple packets may be required to carry the HTTP requests and responses.
● Remember that there is not a 1:1 correspondence between packets in TCP –

ACK the window size for the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

ACK, seq=17

seq=18

seq=19

seq=20

ACK, seq=20

Dealing with the TCP byte stream

● From a programming perspective, socket operations are:
○ socket - establishes the socket (client or server)
○ connect - opens the TCP connection to the remote server
○ write - using the socket file descriptor, write contents to the socket.
○ read – read data from the TCP socket file descriptor, reads N bytes.

● We need the application to tell us something about when the request has
ended.
○ Carriage return / line feed gives us a way to know when the request or response has ended.
○ We can use some headers to know how much memory to allocate (e.g., Content-Length

tells us how many bytes to expect to read).

TCP - Close

ISP
CPE R2R1 BerkeleyR1 R2 www

● Persistent HTTP connections remain open until such time as the server or
client chooses to close them.
○ Allows for pipelining of subsequent requests.

● Either the client or server can decide to close the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

FIN

TCP - Close

ISP
CPE R2R1 BerkeleyR1 R2 www

● Persistent HTTP connections remain open until such time as the server or
client chooses to close them.
○ Allows for pipelining of subsequent requests.

● Either the client or server can decide to close the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

FIN

ACK

TCP - Close

ISP
CPE R2R1 BerkeleyR1 R2 www

● Persistent HTTP connections remain open until such time as the server or
client chooses to close them.
○ Allows for pipelining of subsequent requests.

● Either the client or server can decide to close the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

FIN

ACK

FIN

TCP - Close

ISP
CPE R2R1 BerkeleyR1 R2 www

● Persistent HTTP connections remain open until such time as the server or
client chooses to close them.
○ Allows for pipelining of subsequent requests.

● Either the client or server can decide to close the connection.

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

FIN

ACK

FIN

ACK

Questions?

Looking at packet flows

● You can use programs like tshark and wireshark to look at packets and their layers..

Looking at packet flows

● You can use programs like tshark and wireshark to look at packets and their layers..

Often some “real world” complexities – e.g., secure/encrypted flows.

TLS

● We haven’t really mentioned encryption – but most HTTP traffic is securely
transmitted as HTTPS.
○ Destination port is 443 not 80!

● Transport Layer Security (TLS) provides a way to encrypt traffic and
authenticate remote hosts.
○ At the Transport Layer (i.e., L4) → TCP.

● Introduces new TLS handshake at the start of the TCP flow following the TCP
three-way handshake.

TLS Handshakes

● Handshake starts with a client sending a hello.
○ Specifies the version of TLS to be used.
○ Specifies on the cipher suites to be used to encrypt traffic.
○ A client-specific “random” secret.

ISP
CPE R2R1 BerkeleyR1 R2 www

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

Client Hello

TLS Handshakes

● Server subsequently sends a hello message.
○ Provides a certificate that identifies the server.
○ Along with the selected cipher from the options the client provided.
○ A server-generated “random” secret.

ISP
CPE R2R1 BerkeleyR1 R2 www

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

Client Hello

Server Hello

TLS Handshakes

● Client then provides an additional secret (“premaster”).
○ This is encrypted using the public key of the certificate that was provided by the server.

● The client and server calculate a key for the session:
○ Using the client random, server random, and the premaster secret.

ISP
CPE R2R1 BerkeleyR1 R2 www

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

Client Hello

Server Hello

Encrypted secret

TLS Handshakes

● Client and server then send each other an encrypted message to indicate the
handshake is finished.
○ All subsequent messages sent in TCP can be encrypted using the session key negotiated.

ISP
CPE R2R1 BerkeleyR1 R2 www

DNS

192.168.1.2 192.168.1.1

01:ab:cd:ef:42:01
141.193.213.21

Client Hello

Server Hello

Encrypted secret

Finished

Finished

Questions?

Layering

● Layering gives us a powerful way to solve specific problems without
exposing everyone to the complexity of solving them.

● We haven’t talked at all about the electrical engineering or physics of putting
bits on the wire.
○ But we’ve relied on this working throughout our example.

● Fundamentally has let us continue to evolve networking for new
applications.

Layering - building on top of L7 protocols.

● We looked at some common L7 protocols – particularly HTTP (1.1 & 2).
○ Provided us some common primitive operations.

● Often applications might have the same requirements.
○ e.g., multiplexing multiple data retrievals onto the same underlying HTTP connection.
○ e.g., bi-directionally streaming data between a client and a server.

● We therefore have common frameworks that enable us to implement these
operations without starting from scratch.

● An example is a Remote Procedure Call (RPC) library.
○ Apache Thrift, gRPC.
○ Allow us to build networked applications without repeating ourselves.

Why layers? Abstraction.

● Let’s think about what a developer sees when they work with a higher-layer
RPC framework.

● Making a simple request to a remote Greeter server:
○ Client says Hello!
○ Server returns a message (Hello World).

Why layers? Abstraction.

func main() {
flag.Parse()
// Set up a connection to the server.
conn, err := grpc.Dial(*addr, grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {

log.Fatalf("did not connect: %v", err)
}
defer conn.Close()
c := pb.NewGreeterClient(conn)

// Contact the server and print out its response.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
r, err := c.SayHello(ctx, &pb.HelloRequest{Name: *name})
if err != nil {

log.Fatalf("could not greet: %v", err)
}
log.Printf("Greeting: %s", r.GetMessage())

}

Why layers? Abstraction.

func main() {
flag.Parse()
// Set up a connection to the server.
conn, err := grpc.Dial(*addr, grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {

log.Fatalf("did not connect: %v", err)
}
defer conn.Close()
c := pb.NewGreeterClient(conn)

// Contact the server and print out its response.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
r, err := c.SayHello(ctx, &pb.HelloRequest{Name: *name})
if err != nil {

log.Fatalf("could not greet: %v", err)
}
log.Printf("Greeting: %s", r.GetMessage())

}

Developer did not think about:
1) Machine address or DHCP
2) Any headers (IP, Ethernet, TCP)
3) DNS
4) TCP byte stream
5) HTTP/2
6) gRPC (specific use of HTTP/2)

Rather the developer could think at the
application layer only – and implement
their own logic.

What’s next?

● We’ve covered the end-to-end typical path – used on the Internet and assuming
wired connections.

● We’ll explore some of the places where performance and new applications have
driven new requirements – how has inter-server networking evolved in the
datacenter? (Nandita)

● Look at some of the diversity that happens at different layers – particularly, our
wired Ethernet clients can’t move – how does wireless and cellular networking
work? (Sylvia)

● Hear from a guest lecturer about some of the networking challenges they have
been facing!

Thanks for the engagement and questions over the semester.

I’ll be in lecture and have office hours until April 25th.

