
DNS
Spring 2024

cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io

Where are we?

● Talked about foundations and principles.
○ e.g., packet switching, end-to-end

● How the Internet is made up, and
○ Intra-domain routing
○ Inter-domain routing

● Talked about IP and TCP
○ What do packets look like?
○ How do we make an unreliable network look reliable?
○ How do we deal with congestion?

● Some specific types of networks.
○ Datacenters
○ Software-Defined Networks

● Lots of “plumbing”!

Visually

Layer 1

Layer 2

Layer 3

Layer 4

Physical → Optical fibre, copper

Data Link → Ethernet (we’ve mentioned this, but we’ll come back to it)

Network → IP

Transport → TCP

Visually

Layer 1

Layer 2

Layer 3

Layer 4

Layer 7

Physical → Optical fibre, copper

Data Link → Ethernet (we’ve mentioned this, but we’ll come back to it)

Network → IP

Transport → TCP

We are here!

Application Layer

Lots of different applications – but we’ll focus on some common and
critical ones.

Thinking back…

● On the Internet and ARPANET, three killer applications.

○ Remote terminal
■ Connect to someone else’s machine remotely – like SSH today.
■ telnet <remote host>

○ File transfer
■ Copy files across the network
■ ftp <remote host>

○ Email
■ Send a message to another user
■ mail <user>@<remote host>

● Remembering the remote host addresses is difficult for humans.
○ mail alice@46.0.1.2?!

Avoiding numerical addresses.

● Rather than use numerical addresses have a hostname.

● Record this hostname and its mapping to an IP address on the Internet in
hosts.txt.

● e.g., UCB-ARPA → 10.0.0.78
○ Now rather than using mail mosher@10.0.0.78 – one can mail mosher@ucb-arpa

Maintaining the lists of hosts

● Originally maintained by Elizabeth Jocelyn “Jake” Feinler.
○ Give her a call and she would add an entry to the hosts file!
○ From 1982…

“I remembered that back then we simply xeroxed the
hosts.txt file and put it into the Arpanet Directory, so I

copied that.” – Elizabeth Feinler

https://elists.isoc.org/pipermail/internet-history/2008-January/000702.html

Introducing hosts.txt

● Originally, the list of hostnames (“hosts.txt”) was human readable.

Keeping hosts.txt up-to-date.

● Every site maintained their own copy of hosts.txt.
○ Leading to differing mappings at each site.
○ See RFC606 (1973) – “it seems about time to put an end to the absurd situation where each

site on the network must maintain a different, generally out-of-date, host list”.

● First step – make the list machine readable.
○ Format defined in RFC608.

https://www.rfc-editor.org/rfc/rfc606
https://www.rfc-editor.org/rfc/rfc608

Introducing hosts.txt

● Originally, the list of hostnames (“hosts.txt”) was human readable.

● Eventually converted to a machine-readable format (example from 1983).

NET : 44.0.0.0 : AMPRNET :
NET : 45.0.0.0 : C3-PR :
NET : 46.0.0.0 : UCB-ETHER :
NET : 47.0.0.0 : SAC-PR-TEMP :

HOST : 46.0.0.4 : UCBARPA : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.5 : UCBCAD : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.6 : UCBERNIE : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.7 : UCBMONET : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.9 : UCBESVAX : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.10 : UCBVAX : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :

https://emaillab.jp/pub/hosts/19830527/HOSTS.TXT

Improved situation for humans!

● Rather than copying a file via FTP from 46.0.0.10…
● Can now copy a file from UCBVAX.

○ Berkeley had a /8!

● But this situation didn’t scale for NIC, and was fragile.
○ Significant work to keep adding to the hosts file (especially as there were more workstations)!
○ Each location had to copy a version of the hosts file from the NIC (via FTP).

■ And it was getting bigger!
■ Could end up with a partial hosts file.

Questions?

The Domain Name System

● Rather than have a centralised file that defines all the hosts – have a system
that allows human-friendly names → IP addresses.

● Must deal with scale!
○ Many hosts/names.
○ Many lookups.
○ Many updates.

● Highly available.
○ No single point of failure (like the FTP server)

● Perform well
○ Communication generally starts with a name lookup!

The Domain Name System (DNS)

● Proposed in RFC882 (1983).

● We use this system (with some modifications – but not many) today!

The DNS: Hierarchies

● Names are hierarchical.

edu

mtholyoke berkeley

www events ischool

pink

www eecs

rise repo
events.mtholyoke.edu

repo.eecs.berkeley.edu

The DNS: Hierarchies

● Authority is hierarchical.

edu

mtholyoke berkeley

www events ischool

pink

www eecs

rise repo

Educause is responsible
for .edu

UCB is responsible for
.berkeley.edu

The DNS: Hierarchies

● Infrastructure is hierarchical.
● Not just one server that knows all the names.

○ Hierarchy of name servers which know parts of the tree.

a.edu-servers.net

as.mtholyoke.edu adns1.berkeley.edu

ns.eecs.berkeley.edu

Name server that knows
about nameservers for

*.edu

Name server
that knows

about things
“below” for

berkeley.edu

The DNS: Hierarchies

● Infrastructure is hierarchical.
● Not just one server that knows all the names.

○ Hierarchy of name servers which know parts of the hierarchy.

a.edu-servers.net

as.mtholyoke.edu adns1.berkeley.edu

ns.eecs.berkeley.edu

Name server that knows
about nameservers for

*.edu

Name server
that knows

about things
“below” for

berkeley.edu

Doesn’t know anything
about berkeley.edu!

Nameserver that knows
about stuff at/below

eecs.berkeley.edu

Questions?

DNS: The Bigger Picture

root

com mil gov net org edu uk fr jp… Top Level
Domains

(TLDs)

● DNS root
○ Controlled by ICANN.

● Top Level Domains (TLDs)
○ Controlled by various parties.
○ Historically, relatively few (.com, .net, .org, and country specific) but more recently many

more!
■ 1590 as of 2024-03!

DNS: The Bigger Picture

root

com mil gov net org edu uk fr jp… Top Level
Domains

(TLDs)

co

amazon google

ac

ic

ph

Each TLD can decide its
own structure.

Referred to as Nth level
domains

Controlled by many
organisations

DNS: Zones, Authority and Delegation

● A zone corresponds to an administrative authority responsible for some part
of the hierarchy.

● A zone is authoritative for how names within that part of the hierarchy are
controlled.

● You can choose to delegate authority to another nameserver within a zone.

DNS: Zones, Authority and Delegation

a.root-servers.net

i.edu-servers.net

adns3.berkeley.edu

Delegates *.edu to
i.edu-servers.net

Delegates *.berkeley.edu to
adns3.berkeley.eduAuthoritative for

*.berkeley.edu

Authoritative for
*.edu

● Allows different administrative authorities to be responsible for different
parts of the hierarchy.
○ e.g., Educause (*.edu) don’t have to be aware of what is happening in berkeley.edu.

Questions?

DNS: Name Lookup

● Iterative resolution process.

● Start with root name server.
● Ask for the name you want.
● If it has an answer, you’re done!
● If not, it will redirect you to the next nameserver to ask.

DNS: Name Lookup

● Example: let’s look up eecs.berkeley.edu.
○ You can do this from your laptop.
○ dig +trace @a.root-servers.net eecs.berkeley.edu

. 518400 IN NS e.root-servers.net.

. 518400 IN NS h.root-servers.net.

. 518400 IN NS l.root-servers.net.

edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.

;; Received 1176 bytes from 2001:7fd::1#53(k.root-servers.net) in 86 ms

Where to find the root
zone (“.”)

.edu is delegated to
these nameservers – go

ask them.

Answer from one of
the root servers

DNS: Name Lookup

● Example: let’s look up eecs.berkeley.edu.
○ You can do this from your laptop.
○ dig +trace @a.root-servers.net eecs.berkeley.edu

berkeley.edu. 172800 IN NS adns1.berkeley.edu.
berkeley.edu. 172800 IN NS adns2.berkeley.edu.
berkeley.edu. 172800 IN NS adns3.berkeley.edu.

;; Received 377 bytes from 2001:503:39c1::30#53(i.edu-servers.net) in 16 ms

Answer from
i.edu-servers.net

berkeley.edu is delegated to
these nameservers – go ask

them

DNS: Name Lookup

● Example: let’s look up eecs.berkeley.edu.
○ You can do this from your laptop.
○ dig +trace @a.root-servers.net eecs.berkeley.edu

eecs.berkeley.edu. 86400 IN A 141.193.213.10
eecs.berkeley.edu. 86400 IN A 141.193.213.11

;; Received 78 bytes from 192.107.102.142#53(adns3.berkeley.edu) in 27 ms

Answer from Berkeley’s
name servers

I’m authoritative for
berkeley.edu! Here’s the IP

address…

Who does these lookups?

a.root-servers.net a.edu-servers.net adns1.berkeley.edu

● Originally – done by the end host.

Iterative queries (what +trace did for us!)

Questions?

Who does these lookups?

● Today, usually done by a resolving name server (“resolver”).

Recursive query made to a resolver.
Well known resolvers – 1.1.1.1 (CloudFlare), 8.8.8.8 (Google).

8.8.8.8

a.root-servers.net

a.edu-servers.net

adns1.berkeley.edu

Who does these lookups?

● Why do we have resolvers?

8.8.8.8

a.root-servers.net

a.edu-servers.net

adns1.berkeley.edu

Every query would hit
here.

Every .edu query would hit
here.

Every berkeley.edu query
would hit here.

Who does these lookups?

● Why do we have resolvers?

● Authoritative servers can be optimised for giving
responses.

8.8.8.8

a.root-servers.net

a.edu-servers.net

adns1.berkeley.edu

Every query would hit
here.

Every .edu query would hit
here.

Every berkeley.edu query
would hit here.

Who does these lookups?

● Why do we have resolvers?

● Resolvers can cache entries according to the TTL – reduces the load on
authoritative servers.

8.8.8.8 adns1.berkeley.edu

Multiple clients might ask for
repo.eecs.berkeley.edu

eecs.berkeley.edu. 86400 IN A
141.193.213.10

The authoritative server gave
us a Time To Live.

Chicken-and-egg: How do we know addresses?

● For clients – we need to know our resolver address.
○ Either programmed yourself – well-known, memorable addresses – e.g., 8.8.8.8.
○ Or learnt when addresses are assigned, DHCP, SLAAC (we’ll come back to this!)

● For resolvers – where are the root servers?
○ Root hints file – https://www.internic.net/domain/named.root
○ Allows software that needs to make DNS queries and can’t rely on a resolver to know where

to start.

; OPERATED BY RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
K.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fd::1

https://www.internic.net/domain/named.root

Questions?

DNS: Zone Availability

● We’ve been pretending that each zone just has one DNS server.

● Zones “must” have two authoritative nameservers.
○ Ensures availability of that zone.

● Such nameservers work in a primary/secondary model – one server is the
primary, and the zone contents is transferred to the secondaries.

▶ dig berkeley.edu NS

;; ANSWER SECTION:
berkeley.edu. 10800 IN NS adns2.berkeley.edu.
berkeley.edu. 10800 IN NS adns1.berkeley.edu.
berkeley.edu. 10800 IN NS adns3.berkeley.edu.

DNS: Root Server Availability

● If the root servers were unavailable, this would be a huge problem!

● After the TTL of a zone timed out (including .edu being redirected to its
nameservers) - we would not know where to go to find any zone!

● Root servers are therefore highly-available.
○ There are 13 root servers.
○ But there are many, many instances of these root servers.

● We use a trick called “anycast” – use the same IP address in many places on
the Internet.
○ So one address for k.root-servers.net might be many servers in many different places.

DNS: k.root-servers.net
K.root-servers.net. 3600000 IN A 193.0.14.129
K.root-servers.net. 3600000 IN AAAA 2001:7fd::1

Very long TTL - ~42 days. One IPv4 address! One IPv6 address!

DNS: k.root-servers.net
K.root-servers.net. 3600000 IN A 193.0.14.129
K.root-servers.net. 3600000 IN AAAA 2001:7fd::1

https://www.ripe.net/analyse/dns/k-root/

DNS: f.root-servers.net
K.root-servers.net. 3600000 IN A 193.0.14.129
K.root-servers.net. 3600000 IN AAAA 2001:7fd::1

Which instance am I actually using?

▶ dig +short +norec @k.root-servers.net hostname.bind chaos txt
"ns1.us-mia.k.ripe.net"

DNS: Root Server Availability

● Duplication of server infrastructure means that the root servers are
extremely highly available.

● f.root-servers.net has >3,000 instances.

● Lots of cooperation between network operators to keep the root servers
highly available.

Questions?

The DNS Protocol

DNS Details

● APIs – how does DNS look from an developer perspective?

● Servers – what software acts as an authoritative or recursive DNS server?

● The DNS protocol – what do DNS network packets look like?

DNS: APIs

● Relatively simple, common APIs that are available in almost all languages.

● result = gethostbyname(“foo.com”)
○ Limited to IPv4.
○ Deprecated but very common.

● error = getaddrinfo(“example.com”, NULL, NULL, &result)
○ Replacement API
○ Supports more than IPv4.

● Usually just make requests to the OS’ configured resolving DNS server.
○ All the complexities of the DNS hidden from the end developer.

DNS Servers

● Two types of servers that we might need to run…

● Authoritative – usually run by application providers or “hosting” providers.
○ Lots of use of AWS Route53, or nameservers of “domain registries” (Verisign).

● Recursive – usually run by ISPs.
○ Although recursive servers run by large application providers (Cloudflare, Google) are

popular.

DNS Servers: BIND

● Huge amount of DNS history here at Berkeley!

● First DNS server written for Unix was BIND (1984).
○ And berkeley.edu is the oldest .edu!

● Many additional
options - with
optimisations for
authoritative and
recursive.

The DNS Protocol

● Client/server design.
○ Client is often a user host, but can be a recursive server.

● Client sends a query, server replies with a response.

● Server typically listens on a well-known UDP port: 53.

The DNS Protocol

● Why UDP?
○ Saves RTT for TCP connection establishment.
○ TCP requires servers to keep state per connection – lots of connections.
○ No need for ordered stream abstraction - a single packet is often all that is required!

▶ tshark -T fields -E separator=, -e ipv6.src -e ipv6.dst -e frame.len -e _ws.col.Info
udp port 53

2001:5a8:429e:9f00:8003:4ac:9eb5:8e97,2001:5a8:429e:9f00:3e28:6dff:fe67:7f19,101,Standar
d query 0x3d90 A google.com OPT
2001:5a8:429e:9f00:3e28:6dff:fe67:7f19,2001:5a8:429e:9f00:8003:4ac:9eb5:8e97,117,Standar
d query response 0x3d90 A google.com A 142.251.214.142 OPT

The DNS Protocol

● Why UDP?
○ Saves RTT for TCP connection establishment.
○ TCP requires servers to keep state per connection – lots of connections.
○ No need for ordered stream abstraction - a single packet is often all that is required!

▶ tshark -T fields -E separator=, -e ipv6.src -e ipv6.dst -e frame.len -e _ws.col.Info
udp port 53

2001:5a8:429e:9f00:8003:4ac:9eb5:8e97,2001:5a8:429e:9f00:3e28:6dff:fe67:7f19,101,Standar
d query 0x3d90 A google.com OPT
2001:5a8:429e:9f00:3e28:6dff:fe67:7f19,2001:5a8:429e:9f00:8003:4ac:9eb5:8e97,117,Standar
d query response 0x3d90 A google.com A 142.251.214.142 OPT

Query is one 101 byte packet.

Response is one 117 byte
packet

The DNS Protocol: UDP?

● Wait… isn’t UDP unreliable? What happens if packets are dropped?

● Simple timeout/retry mechanism.
● Varies from OS-to-OS, but can be fairly slow.

● Ensuring that your resolver is available, and performant is important.
○ Often this is a function your home router might provide.
○ And you can have multiple resolvers to fall back between.

The DNS Protocol: TCP and further.

● UDP also causes us complexities if we have very large responses.

● Generally, we don’t!
○ Remember – our google.com query was <120 bytes!

● Transferring zones between primary authoritative servers and secondary
ones results in larger responses.
○ These queries are often done over TCP.

● Recent advances in DNS start to look how to implement it over encrypted
transport.
○ TCP and UDP are “plaintext” – someone in the middle can see what you’re doing!

Questions?

The DNS Protocol

● All messages share the same basic format.

● Messages may be:
○ A query - QR bit in header is 0
○ A response - QR bit in header is 1

● Theoretically, there are different query types.
○ IQUERY.

■ Show me the names for this address.
■ Obsoleted in 2002 (RFC3425) – not implemented, or disabled.

○ STATUS - not really defined.
○ QUERY - used for basically everything.

● The RD bit indicates recursion desired - do a recursive lookup.

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

● Many different types of record.

● Focusing on the primary goal is to map names to IP addresses.
● Three types of records we need:

○ A records (IPv4 address)
○ AAAA records (IPv6 address)
○ NS records (name server)

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

● For A and AAAA records, this is the hostname of interest.
○ e.g., www.google.com

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

● The actual value associated with the record.

● For A records, this is the IPv4 address.
● For AAAA records, this is the IPv6 address.
● For NS records, this is the name server’s name.

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

● How long in seconds the record response is valid for.

DNS: Resource Records

● DNS zone data is stored in resource records (RRs)

● These are essentially a tuple:
○ (type, name, value, ttl, class)

● We’ll ignore this – intended to be used for places where the DNS was used
outside of the Internet.
○ Not aware of any cases where this is different!

Back to our repo.eecs.berkeley.edu query.

● What records do we see?

DNS: Name Lookup

. 518400 IN NS e.root-servers.net.

. 518400 IN NS h.root-servers.net.

. 518400 IN NS l.root-servers.net.

edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.

;; Received 1176 bytes from 2001:7fd::1#53(k.root-servers.net) in 86 ms

name - the root zone is
called “.”

ttl - how long this
response is valid

type - in this case a
nameserver (NS) record

value - the name of the
next nameserver we are

being referred to.

We can have multiple of
each type of record

associated with the same
name.

DNS: Name Lookup

;; ANSWER SECTION:
repo.eecs.berkeley.edu. 21600 IN CNAME repo-2.eecs.berkeley.edu.
repo-2.eecs.berkeley.edu. 21600 IN A 128.32.138.46

Name that we were
looking up - with

associated TTL and value.

Huh? New record type
CNAME - this is an alias to

another name.

A record with the value of
the IPv4 address for

repo-2.eecs…

DNS: Name Lookup

;; QUESTION SECTION:
;repo-2.eecs.berkeley.edu. IN AAAA

;; AUTHORITY SECTION:
eecs.berkeley.edu. 1791 IN SOA ns.eecs.berkeley.edu. dns.eecs.berkeley.edu.
100012225 10887 3600 604800 86400

When we ask for the AAAA
record, one doesn’t exist.

So we only see the Authority section
of the response (what zone version is

this…), and no Answer section.

What happens with multiple responses?

● In some cases, there are multiple responses for an A or AAAA query.

;; ANSWER SECTION:
microsoft.com. 1999 IN A 20.112.250.133
microsoft.com. 1999 IN A 20.231.239.246
microsoft.com. 1999 IN A 20.76.201.171
microsoft.com. 1999 IN A 20.70.246.20
microsoft.com. 1999 IN A 20.236.44.162

● No precedence between these different A records.
● Client can therefore pick one, the server shuffles the order.

● Coarse-grained load-balancing, and simple resiliency.

DNS: Email

● How do we know where to send an email when we write to
sylvia@eecs.berkeley.edu?

● We need a different record type.
○ MX - mail exchanger record – tells us where to send email messages.

▶ dig eecs.berkeley.edu MX

;; ANSWER SECTION:
eecs.berkeley.edu. 10549 IN MX 1 aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt1.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt2.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt4.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt3.aspmx.l.google.com.

mailto:sylvia@eecs.berkeley.edu

DNS: Email

● How do we know where to send an email when we write to
sylvia@eecs.berkeley.edu?

● We need a different record type.
○ MX - mail exchanger record – tells us where to send email messages.

▶ dig eecs.berkeley.edu MX

;; ANSWER SECTION:
eecs.berkeley.edu. 10549 IN MX 1 aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt1.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt2.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt4.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt3.aspmx.l.google.com.

Where to connect to when sending an
email to this domain – doesn’t have to

be within the zone.

mailto:sylvia@eecs.berkeley.edu

DNS: Email

● How do we know where to send an email when we write to
sylvia@eecs.berkeley.edu?

● We need a different record type.
○ MX - mail exchanger record – tells us where to send email messages.

▶ dig eecs.berkeley.edu MX

;; ANSWER SECTION:
eecs.berkeley.edu. 10549 IN MX 1 aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt1.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 5 alt2.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt4.aspmx.l.google.com.
eecs.berkeley.edu. 10549 IN MX 10 alt3.aspmx.l.google.com.

Where to connect to when sending an
email to this domain – doesn’t have to

be within the zone.

Priority within the value – MX records
allow us to understand which mail

servers to try in which order.

mailto:sylvia@eecs.berkeley.edu

DNS as a Simple Load-Balancer

● When we look at google.com…. from my home ISP

▶ dig google.com +short
142.251.46.238

DNS as a Simple Load-Balancer

● When we look at google.com…. from my home ISP

▶ dig google.com +short
142.251.46.238

● When we look at google.com…. from a machine in Oregon.

rjs@jumphost:~$ dig google.com +short
74.125.135.113
74.125.135.100
74.125.135.102
74.125.135.101
74.125.135.138
74.125.135.139

DNS as a Simple Load Balancer

● Sometimes DNS gives us responses based on where we are querying from.

● This means the authoritative server has some logic to say “if this query is
from X then respond with Y”.

● What could X be?
○ The recursive resolver that is querying the authoritative server.

■ Most clients don’t query the authoritative server directly
○ The end client that is querying the resolver

■ Requires extension to DNS to carry the client subnet.
○ The geographical location of the end user – needs us to map from IP address to physical

location.
■ Needs a mapping database like MaxMind.

https://www.maxmind.com/en/geoip-demo

How does geographical load balancing work?

8.8.8.8 ns1.google.com

youtube.com. 300 IN AAAA
2607:f8b0:4005:80d::200e

Query: youtube.com AAAA?
Client is from: 2001:5a8:429e::/48

How does geographical load balancing work?

● Client information is used to determine something about the “right” place to
route the client to.

● Response is then given directing that client to the “nearest” server.

● Some guessing involved.
○ We don’t know how close from a network perspective that user is to the geographical

location.
○ We don’t know what the performance to different servers is.

● Some proprietary logic required at the authoritative server.

DNS: Geographical Load Balancing Results

▶ host 2607:f8b0:4005:80d::200e
e.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.d.0.8.0.5.0.0.4.0.b.8.f.7.0.6.2.ip6.arpa domain
name pointer sfo03s25-in-x0e.1e100.net.

Use a different DNS record type – PTR – lets us
assign a name to an IP address.

Mapped to sfo… – pretty close!

● Machine in Oregon got a different result – 2607:f8b0:400e:c0c::88.
● Comparing performance:

○ My laptop → SF result = 20 msec RTT.
○ My laptop → Oregon result = 35 msec RTT.

● Mapping logic gave us a way to map a client to a better performing server.

Recap

● The DNS was created to allow for name to IP address resolution – helping
humans to access things on the Internet.

● It is a hierarchical system – where both zones and nameservers have a
hierarchy that allows for delegation to authoritative entities.

● DNS is a simple protocol - most often used over UDP - that provides a way to
query for particular record types.

● It extends beyond just address resolution into service resolution - e.g., mail
servers - and can be used for load-balancing.

