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Today: Congestion Control

● One of the "core" topics in networking


● Today: concepts, design space, TCP’s approach 

● Next lecture: implementation details and advanced topics



● If two packets arrive at a router at the same time, the 
router will transmit one and buffer the other 

● If many packets arrive close in time 

● the router cannot keep up ! gets congested

● causes packet delays and drops

Recall: Lecture 3
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Some History: TCP in the 1980s

● Sending rate only limited by flow control 

● Dropped packets ! senders retransmit, repeatedly! 

● Led to “congestion collapse” in Oct. 1986

● Fixed by Karels and Jacobson’s development of 
TCP’s congestion control (CC) algorithms

-- Karels (UCB) and Jacobson(LBL)
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Their Approach
● Incremental extension to TCP’s existing protocol


● Source adjusts its window size based on observed packet loss 

● A pragmatic and effective solution 

● Required no upgrades to routers or applications!

● Patch of a few lines of code to BSD’s TCP implementation

● Quickly adopted and has been the de-facto approach since 

● Extensively researched and improved upon
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Topics for today

● What makes CC a hard problem?
● Goals for a good solution 
● Design space 
● Components of a solution
● TCP’s approach

● Next lecture: 

● TCP CC in detail 

● Advanced topics in CC 

6
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Including “indirect” competition! 
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Congestion Control

● Fundamentally, a resource allocation problem

● Flow is assigned a shared of the link BW along a path

● But more complex than traditional resource alloc. 

● Changing one link’s allocation can have global impact

● And we’re changing allocations on every flow arrival/exit

● No single entity has a complete view or complete control! 

● Allocations in our context are highly interdependent 
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● What makes CC a hard problem?

● Goals for a good solution 

● Design space 

● TCP’s approach (high level) 

● Components of a solution
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Goals

● From a resource allocation perspective

● Low packet delay and loss 

● High link utilization 

● “Fair” sharing across flows 

● From a systems perspective

● Practical: scalable, decentralized, adaptive, etc.



Outline for today

● What makes CC a hard problem?

● Goals for a good solution 

● Design space 

● TCP’s approach (high level) 

● Components of a solution
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Possible Approaches

(1) Reservations
(2) Pricing / priorities

● Don’t drop packets for the highest bidders/priority users
● Charge users based on current congestion levels
● Requires payment model
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Possible Approaches

(1) Reservations
(2) Pricing / priorities 
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment 
has proven powerful
● Doesn’t presume business model
● Doesn’t assume we know app/user requirements
● But does assume good citizenship!
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(1) First, host A discovers it can send at ~10Gbps 
(2) A notices that ~10Gbps is congesting the network 

(3) A figures out it should cut its rate to ~1Gbps
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(4) A notices that 1Gbps is congesting the network

(5) A figures out it should cut its rate to (say) ½ Gbps
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Two broad classes of solutions

● Host-based CC 
● No special support from routers
●  Hosts adjust rate based on implicit feedback from routers

● Router-assisted CC 
● Routers signal congestion back to hosts 
● Hosts pick rate based on explicit feedback from routers

● We’ll study TCP’s host-based approach in detail and briefly touch on 
router-assisted CC  

! Jacobson’s original TCP approach
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Sketch of a (host-based) solution

Each source independently runs the following:

● Pick initial rate R 

● Try sending at a rate R for some period of time 


● Did I experience congestion in this time period? 

▪ If yes, reduce R 

▪ If no, increase R 


● Repeat

How do we pick the initial rate?

How do we detect congestion

By how much should  
we increase/decrease
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Detecting Congestion?

● Packet loss

● Approach commonly used by TCP 


● Benefits

● Fail-safe signal

● Already something TCP detects to implement reliability


● Cons 

● Complication: non-congestive loss (e.g., checksum err.)

● Complication: reordering (e.g., with cumulative ACKs)

● Detection occurs after packets have experienced delay
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Detecting Congestion?

● Increase in packet delay
● Long considered tricky to get right: packet delay varies 

with queue size and competing traffic
● Google’s BBR protocol is challenging this assumption



Taking stock:  
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse- 
grained

Fine- 
grained

Loss-based Delay-based 
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Discovering an initial rate?

● Goal: estimate available bandwidth 

● Start slow (for safety) 

● But ramp up quickly (for efficiency) 


● Toy example of an inefficient solution

● Add ½ Mbps every 100ms until we detect loss

● If available BW is 1Mbps, will discover rate in 200ms

● If available BW is 1Gbps, will take 200 seconds 

● Either is possible! 
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Solution: “Slow Start”

● Start with a small rate (hence the name)


● Might be much less than actual bandwidth

● Linear increase takes too long to ramp up


● Increase exponentially until first loss 

● E.g., double rate until first loss 

● A ”safe” rate is half of that when first loss occurred

● I.e., if first loss occurred at rate R, then R/2 is safe rate



Components of a Solution

● Discovering an initial rate 


● Detecting congestion 


● Reacting to congestion (or lack thereof) 

● Increase/decrease rules



Sketch of a solution

Each source independently runs the following:


● Pick initial rate R 

● Try sending at a rate R for some time period 


● Did I experience congestion in this time period? 

▪ If yes, reduce R 

▪ If no, increase R 


● Repeat

By how much should  
we increase/decrease?
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Rate adjustment

● This is a critical part of a CC design!

● Determines how quickly a host adapts to 
changes in available bandwidth

● Determines how effectively BW is consumed 

● Determines how BW is shared (fairness)
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Goals for rate adjustment 

● Efficiency: High utilization of link bandwidth


● Fairness: Each flow gets equal share
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How should we adjust rate?

● At the highest level: fast or slow 

● Fast: multiplicative increase/decrease  

● E.g., increase/decrease by 2x (R ! 2R or R/2)


● Slow: additive increase/decrease

● E.g.,  increase/decrease by +1 (R! R+1 or R-1)
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Why AIMD? Intuition

● Consequences of sending too much are worse 
than sending too little

● Too much: packets dropped and retransmitted

● Too little: somewhat lower throughput


● General approach:

● Gentle increase when uncongested (exploration)

● Rapid decrease when congested

40



Why AIMD? In more detail... 

41



Why AIMD? In more detail... 
● Consider a simple model


● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively


41



Why AIMD? In more detail... 
● Consider a simple model


● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively


● When X1+X2 > C, network is congested

41



Why AIMD? In more detail... 
● Consider a simple model


● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively


● When X1+X2 > C, network is congested
● When X1+X2 < C, network is underloaded 

41



Why AIMD? In more detail... 
● Consider a simple model


● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively


● When X1+X2 > C, network is congested
● When X1+X2 < C, network is underloaded 

● Would like both: 

● X1 + X2 = C ! link is fully utilized with no congestion

● X1 = X2 ! sharing is “fair”

41
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● Unused capacity 
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Our Four Options

● AIAD: gentle increase, gentle decrease


● AIMD: gentle increase, rapid decrease


● MIAD: rapid increase, gentle decrease


● MIMD: rapid increase, rapid decrease


● And now apply our simple model!
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AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5


● First iteration: no congestion

● X1 → 2, X2 → 4

● Second iteration: congestion

● X1 → 0, X2 → 2

● Third iteration: no congestion

● X1 → 1, X2 → 3	 	 	

● … Back where we started!  
! Gap between X1 and X2  

didn’t change at all  
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AIAD
● Increase: x + a
● Decrease: x - b

● Does not 
converge to 
fairness
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MIMD Dynamics

● Consider: Increase: 2	 Decrease: 
  × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5
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MIMD Dynamics

● Consider: Increase: 2	 Decrease: 
  × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5


● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4
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MIMD Dynamics

● Consider: Increase: 2	 Decrease: 
  × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5


● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	
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MIMD Dynamics

● Consider: Increase: 2	 Decrease: 
  × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5


● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	

● …
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MIMD Dynamics

● Consider: Increase: 2	 Decrease: 
  × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5


● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	

● …
49Again, no improvement in fairness
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MIAD Dynamics

● Consider: Increase: 2	 Decrease:   × −1
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MIAD Dynamics

● Consider: Increase: 2	 Decrease:   × −1
● Start at X1 = 1, X2 = 3, with C = 5


● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
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MIAD Dynamics

● Consider: Increase: 2	 Decrease:   × −1
● Start at X1 = 1, X2 = 3, with C = 5


● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
● Third iteration: congestion; X1 → 0, X2 → 4
● Fourth iteration: no congestion; X1 → 0, X2 → 8 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MIAD Dynamics

● Consider: Increase: 2	 Decrease:   × −1
● Start at X1 = 1, X2 = 3, with C = 5


● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
● Third iteration: congestion; X1 → 0, X2 → 4
● Fourth iteration: no congestion; X1 → 0, X2 → 8 

      X1 pegged at 0; MIAD is maximally unfair!
51
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AIMD Dynamics
● Consider: Increase: 	 Decrease:   + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5


● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5
● Eighth: congestion: X1 !  1.625, X2 ! 1.75
● Ninth: no congestion: X1 !2.625, X2! 2.75

Diff = 1

Diff = 1
Diff = 1

Diff = 0.5
Diff = 0.5

Diff = 0.25
Diff = 0.25
Diff = 0.25

Diff = 0.125
Diff = 0.125



AIMD

● Difference between X1 and X2 decreasing!

● Difference stays constant when increasing

● Halves every time there is a decrease
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AIMD
● Increase: x+aI

● Decrease: x*bD

● Converges to 
fairness
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Answer to Why AIMD?

● AIMD embodies gentle increase, rapid decrease

● AIMD only choice that drives us towards “fairness”

● Out of the four options

● AIAD, MIMD: retain unfairness

● MIAD: maximally unfair

● AIMD: fair and appropriate gentle/rapid actions
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Any Questions?
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Sketch of TCP’s solution

Each source independently runs the following:


● Slow-start to find initial rate 

● Try sending at a rate R for some time period 


● Did I experience congestion loss in this time period? 

▪ If yes, reduce R


▪ If no, increase R 

● Repeat



Sketch of TCP’s solution

Each source independently runs the following:


● Slow-start to find initial rate 

● Try sending at a rate R for some time period 


● Did I experience congestion loss in this time period? 

▪ If yes, reduce R multiplicatively (2x)


▪ If no, increase R additively (+1)

● Repeat
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● Avoid overloading the receiver (flow control)
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Review:

● Sender maintains a window of packets in flight

● Window size W is picked to balance three goals
● Take advantage of network capacity (“fill the pipe”)
● Avoid overloading the receiver (flow control)
● Avoid overloading links (congestion control)

● Flow control: sender maintains an advertised window; 
denoted RWND (for receiver window) 

● CC: sender maintains a congestion window (CWND)
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All These Windows…

● Congestion Window: CWND

● How many bytes can be sent without overloading links

● Computed by the sender using a CC algorithm


● Flow control window: RWND

● How many bytes can be sent without overflowing the 

receiver’s buffers

● Implemented by having the receiver tell the sender


● Sender-side window = min{CWND, RWND}

● Assume for this lecture that RWND > CWND



Note

● Recall: TCP operates on bytestreams


● Hence, real implementations maintain CWND in bytes


● This lecture will talk about CWND in units of MSS 

● MSS: Maximum Segment Size, the max number of bytes of data that 

one TCP packet can carry in its payload

● This is only for pedagogical purposes
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Review: 

Sender maintains a sliding window of W contiguous bytes

i i + W

Sender maintains a single timer, for the LHS of window


On timeout, sender retransmits the packet starting at i
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Each source independently runs the following:


● Slow-start to find initial rate 

● Try sending at a rate R for some time period 


● Did I experience congestion loss in this time period? 

▪ If yes, reduce R multiplicatively (2x)


▪ If no, increase R additively (+1)

● Repeat
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Extending TCP with CC 

● Add a congestion window parameter (CWND) 

● When RWND > CWND, the sender’s rate is CWND/RTT 

● Adapting CWND ! adapting sender’s rate



Recall: how we adapt rate 

● Detecting congestion 

● Loss-based


● Discovering an initial rate 

● Slow start 


● Adapting rate to congestion (or lack thereof) 

● AIMD 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Updating CWND  
(to implement slow-start and AIMD)

● CWND updates are event driven 

● Three types of events relevant to CC

● New ACK

● k(=3) duplicate ACKs 

● Timeout 
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Adapting CWND based on events

● New ACK ! increase CWND (based on slow-start or AIMD)

● Indicates no congestion was encountered

● 3 dupACKs ! decrease CWND (based on AIMD)

● Indicates isolated loss 

● Timeout ! rediscover a good CWND (return to slow-start) 

● Indicates loss of several packets. Bad news!


● Let’s take a closer look at how this is implemented... 
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How TCP Implements Slow Start

● Sender starts at a slow rate; increases rate  
exponentially until first loss 

● In TCP: start with a small CWND = 1 (MSS)
● So, initial sending rate is MSS/RTT 

● Then double CWND every RTT until first loss 

● Implemented as: On each ACK: CWND += 1 (MSS)
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Simple implementation: On each ACK, CWND += 1 (MSS)
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Slow Start in Action
Goal: Double CWND every round-trip time


Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

D6 D7

CWND=1

A4 A5 A6 A7

CWND=2 CWND=3 CWND=4 ...  CWND=8
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How TCP Implements Slow Start  
(contd.)

● Double CWND every RTT until first loss

● Introduce a “slow start threshold” parameter
● SSTHRESH, used to remember last “safe” rate 

● On first loss: SSTHRESH = CWND/2



AIMD in TCP

● Additive increase: 

● No loss ! increase CWND by 1 MSS every RTT
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Implementing Additive Increase
● Implementation works by adding a fraction of an  

MSS every time we receive an ACK 

● On receiving an ACK (for new data)


● 


●   if counting CWND 

in bytes

𝐶𝑊𝑁𝐷  → 𝐶𝑊𝑁𝐷 +
1

𝐶𝑊𝑁𝐷

𝐶𝑊𝑁𝐷  → 𝐶𝑊𝑁𝐷 + 𝑀𝑆𝑆  ×  
𝑀𝑆𝑆

𝐶𝑊𝑁𝐷

● NOTE: after full window, CWND increases by 1 MSS

● Thus, CWND increases by 1 MSS per RTT
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AIMD in TCP

● Additive increase: 
● No loss ! increase CWND by 1 MSS every RTT

● Multiplicative decrease
● Loss detected by 3 dupACKs ! divide CWND in half



Implementing Multiplicative Decrease



Implementing Multiplicative Decrease

● On receiving 3rd dupACK:


● 𝐶𝑊𝑁𝐷  →
𝐶𝑊𝑁𝐷

2



On Timeout

80



On Timeout

● Rationale: lost multiple packets in a window

● Current CWND may be way off

● Hence, need to rediscover a good rate from scratch

● Design decision that errs on the side of caution


80



On Timeout

● Rationale: lost multiple packets in a window

● Current CWND may be way off

● Hence, need to rediscover a good rate from scratch

● Design decision that errs on the side of caution


● Hence, on timeout:


● Set SSTHRESH ← 


● Set CWND ← 1 MSS & enter Slow Start mode

𝐶𝑊𝑁𝐷
2

80
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Slow-Start vs. AIMD

● When does a sender stop Slow-Start and start 
Additive Increase?

● Determined by SSTHRESH

● When CWND > SSTHRESH, sender switches 
from slow-start to AIMD’s additive increase



Recap: TCP congestion control 

● Detecting congestion 

● Loss-based


● Discovering an initial rate 

● Slow start 


● Adapting rate to congestion (or lack thereof) 

● AIMD 

TCP implements the above by updating

 CWND on ACK arrivals and timeouts 




Next Time

● TCP: reliability and CC together 

● Analyzing TCP

● Router-assisted CC



BACKUP



Note: TCP is “ACK Clocked”



Note: TCP is “ACK Clocked”

● A new ACK advances the sliding window and lets a 
new data segment enter the network

● I.e., ACKs “clock” data segments


● What’s the benefit of ACK clocking?



ACK Clocking

Src DstR1 R2
10Gbps 1Gbps 10Gbps
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Consider: source sends a burst of packets



ACK Clocking

Src Dst

Packets are queued and “spread out” at slow link
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ACK Clocking

Src Dst

Sender clocks new packets with the spread

Now sending without queuing at the bottleneck link!


