
Congestion Control

CS 168

Spring 2024

 
Sylvia Ratnasamy

Today: Congestion Control

● One of the "core" topics in networking

● Today: concepts, design space, TCP’s approach 

● Next lecture: implementation details and advanced topics

● If two packets arrive at a router at the same time, the
router will transmit one and buffer the other 

● If many packets arrive close in time

● the router cannot keep up ! gets congested

● causes packet delays and drops

Recall: Lecture 3

Some History: TCP in the 1980s

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

-- Karels (UCB) and Jacobson(LBL)

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

-- Karels (UCB) and Jacobson(LBL)

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

● Led to “congestion collapse” in Oct. 1986

-- Karels (UCB) and Jacobson(LBL)

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

● Led to “congestion collapse” in Oct. 1986

-- Karels (UCB) and Jacobson(LBL)

Some History: TCP in the 1980s

● Sending rate only limited by flow control

● Dropped packets ! senders retransmit, repeatedly!

● Led to “congestion collapse” in Oct. 1986

● Fixed by Karels and Jacobson’s development of
TCP’s congestion control (CC) algorithms

-- Karels (UCB) and Jacobson(LBL)

Their Approach

Their Approach
● Incremental extension to TCP’s existing protocol

● Source adjusts its window size based on observed packet loss 

Their Approach
● Incremental extension to TCP’s existing protocol

● Source adjusts its window size based on observed packet loss 

● A pragmatic and effective solution

● Required no upgrades to routers or applications!

● Patch of a few lines of code to BSD’s TCP implementation

● Quickly adopted and has been the de-facto approach since 

Their Approach
● Incremental extension to TCP’s existing protocol

● Source adjusts its window size based on observed packet loss 

● A pragmatic and effective solution

● Required no upgrades to routers or applications!

● Patch of a few lines of code to BSD’s TCP implementation

● Quickly adopted and has been the de-facto approach since 

● Extensively researched and improved upon

Topics for today

6

Topics for today

● What makes CC a hard problem?

6

Topics for today

● What makes CC a hard problem?
● Goals for a good solution

6

Topics for today

● What makes CC a hard problem?
● Goals for a good solution
● Design space

6

Topics for today

● What makes CC a hard problem?
● Goals for a good solution
● Design space
● Components of a solution

6

Topics for today

● What makes CC a hard problem?
● Goals for a good solution
● Design space
● Components of a solution
● TCP’s approach

6

Topics for today

● What makes CC a hard problem?
● Goals for a good solution
● Design space
● Components of a solution
● TCP’s approach

● Next lecture:

● TCP CC in detail

● Advanced topics in CC

6

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

*For this example, we’ll ignore the BW of links attaching hosts to routers

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

At what rate should Host A send traffic?

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on the destination

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on the destination

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on the destination

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Changes with routing dynamics

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Changes with routing dynamics

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Changes with routing dynamics

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on “competing” flows

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on “competing” flows

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on “competing” flows

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Including “indirect” competition!

Congestion Control

Congestion Control

● Fundamentally, a resource allocation problem

● Flow is assigned a shared of the link BW along a path

Congestion Control

● Fundamentally, a resource allocation problem

● Flow is assigned a shared of the link BW along a path

● But more complex than traditional resource alloc.

● Changing one link’s allocation can have global impact

● And we’re changing allocations on every flow arrival/exit

● No single entity has a complete view or complete control! 

Congestion Control

● Fundamentally, a resource allocation problem

● Flow is assigned a shared of the link BW along a path

● But more complex than traditional resource alloc.

● Changing one link’s allocation can have global impact

● And we’re changing allocations on every flow arrival/exit

● No single entity has a complete view or complete control! 

● Allocations in our context are highly interdependent

Outline for today

● What makes CC a hard problem?

● Goals for a good solution

● Design space

● TCP’s approach (high level)

● Components of a solution

13

Goals

Goals

● From a resource allocation perspective

● Low packet delay and loss

● High link utilization

● “Fair” sharing across flows 

 

Goals

● From a resource allocation perspective

● Low packet delay and loss

● High link utilization

● “Fair” sharing across flows 

 

Aim: a good tradeoff between the above goals

Goals

● From a resource allocation perspective

● Low packet delay and loss

● High link utilization

● “Fair” sharing across flows 

● From a systems perspective

● Practical: scalable, decentralized, adaptive, etc.

Outline for today

● What makes CC a hard problem?

● Goals for a good solution

● Design space

● TCP’s approach (high level)

● Components of a solution

16

Possible Approaches

(1) Reservations

● Pre-arrange bandwidth allocations

● Comes with all the problems we’ve discussed

Possible Approaches

(1) Reservations
(2) Pricing / priorities

Possible Approaches

(1) Reservations
(2) Pricing / priorities

● Don’t drop packets for the highest bidders/priority users

Possible Approaches

(1) Reservations
(2) Pricing / priorities

● Don’t drop packets for the highest bidders/priority users
● Charge users based on current congestion levels

Possible Approaches

(1) Reservations
(2) Pricing / priorities

● Don’t drop packets for the highest bidders/priority users
● Charge users based on current congestion levels
● Requires payment model

Possible Approaches

(1) Reservations

(2) Pricing / priorities

(3) Dynamic Adjustment

● Hosts dynamically learn current level of congestion

● Adjust their sending rate accordingly

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment
has proven powerful

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment
has proven powerful
● Doesn’t presume business model

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment
has proven powerful
● Doesn’t presume business model
● Doesn’t assume we know app/user requirements

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment
has proven powerful
● Doesn’t presume business model
● Doesn’t assume we know app/user requirements
● But does assume good citizenship!

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(1) First, host A discovers it can send at ~10Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(1) First, host A discovers it can send at ~10Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(1) First, host A discovers it can send at ~10Gbps
(2) A notices that ~10Gbps is congesting the network

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(1) First, host A discovers it can send at ~10Gbps
(2) A notices that ~10Gbps is congesting the network

(3) A figures out it should cut its rate to ~1Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(4) A notices that 1Gbps is congesting the network

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(4) A notices that 1Gbps is congesting the network

(5) A figures out it should cut its rate to (say) ½ Gbps

Two broad classes of solutions

● Host-based CC
● No special support from routers
● Hosts adjust rate based on implicit feedback from routers

Two broad classes of solutions

● Host-based CC
● No special support from routers
● Hosts adjust rate based on implicit feedback from routers

● Router-assisted CC
● Routers signal congestion back to hosts
● Hosts pick rate based on explicit feedback from routers

Two broad classes of solutions

● Host-based CC
● No special support from routers
● Hosts adjust rate based on implicit feedback from routers

● Router-assisted CC
● Routers signal congestion back to hosts
● Hosts pick rate based on explicit feedback from routers

! Jacobson’s original TCP approach

Two broad classes of solutions

● Host-based CC
● No special support from routers
● Hosts adjust rate based on implicit feedback from routers

● Router-assisted CC
● Routers signal congestion back to hosts
● Hosts pick rate based on explicit feedback from routers

● We’ll study TCP’s host-based approach in detail and briefly touch on
router-assisted CC

! Jacobson’s original TCP approach

Taking stock:  
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse- 
grained

Fine- 
grained

Taking stock:  
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse- 
grained

Fine- 
grained

Sketch of a (host-based) solution

Sketch of a (host-based) solution

Each source independently runs the following:

Sketch of a (host-based) solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some period of time

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

Sketch of a (host-based) solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some period of time

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

How do we pick the initial rate?

Sketch of a (host-based) solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some period of time

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

How do we pick the initial rate?

How do we detect congestion

Sketch of a (host-based) solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some period of time

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

How do we pick the initial rate?

How do we detect congestion

By how much should  
we increase/decrease

Components of a Solution

Components of a Solution

● Discovering an initial rate

Components of a Solution

● Discovering an initial rate

● Detecting congestion

Components of a Solution

● Discovering an initial rate

● Detecting congestion

● Reacting to congestion (or lack thereof)

● Increase/decrease rules

Detecting Congestion?

Detecting Congestion?

● Packet loss

● Approach commonly used by TCP

Detecting Congestion?

● Packet loss

● Approach commonly used by TCP

● Benefits

● Fail-safe signal

● Already something TCP detects to implement reliability

Detecting Congestion?

● Packet loss

● Approach commonly used by TCP

● Benefits

● Fail-safe signal

● Already something TCP detects to implement reliability

● Cons

● Complication: non-congestive loss (e.g., checksum err.)

● Complication: reordering (e.g., with cumulative ACKs)

● Detection occurs after packets have experienced delay

Detecting Congestion?

● Increase in packet delay

Detecting Congestion?

● Increase in packet delay
● Long considered tricky to get right: packet delay varies

with queue size and competing traffic

Detecting Congestion?

● Increase in packet delay
● Long considered tricky to get right: packet delay varies

with queue size and competing traffic
● Google’s BBR protocol is challenging this assumption

Taking stock:  
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse- 
grained

Fine- 
grained

Loss-based Delay-based

Discovering an initial rate?

Discovering an initial rate?

● Goal: estimate available bandwidth

● Start slow (for safety)

● But ramp up quickly (for efficiency)

Discovering an initial rate?

● Goal: estimate available bandwidth

● Start slow (for safety)

● But ramp up quickly (for efficiency)

● Toy example of an inefficient solution

● Add ½ Mbps every 100ms until we detect loss

● If available BW is 1Mbps, will discover rate in 200ms

● If available BW is 1Gbps, will take 200 seconds

● Either is possible!

Solution: “Slow Start”

Solution: “Slow Start”

● Start with a small rate (hence the name)

● Might be much less than actual bandwidth

● Linear increase takes too long to ramp up

Solution: “Slow Start”

● Start with a small rate (hence the name)

● Might be much less than actual bandwidth

● Linear increase takes too long to ramp up

● Increase exponentially until first loss

● E.g., double rate until first loss 

Solution: “Slow Start”

● Start with a small rate (hence the name)

● Might be much less than actual bandwidth

● Linear increase takes too long to ramp up

● Increase exponentially until first loss

● E.g., double rate until first loss 

● A ”safe” rate is half of that when first loss occurred

● I.e., if first loss occurred at rate R, then R/2 is safe rate

Components of a Solution

● Discovering an initial rate

● Detecting congestion

● Reacting to congestion (or lack thereof)

● Increase/decrease rules

Sketch of a solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some time period

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

By how much should  
we increase/decrease?

Rate adjustment

35

Rate adjustment

● This is a critical part of a CC design!

35

Rate adjustment

● This is a critical part of a CC design!

● Determines how quickly a host adapts to
changes in available bandwidth

35

Rate adjustment

● This is a critical part of a CC design!

● Determines how quickly a host adapts to
changes in available bandwidth

● Determines how effectively BW is consumed

35

Rate adjustment

● This is a critical part of a CC design!

● Determines how quickly a host adapts to
changes in available bandwidth

● Determines how effectively BW is consumed

● Determines how BW is shared (fairness)

35

Goals for rate adjustment

● Efficiency: High utilization of link bandwidth

● Fairness: Each flow gets equal share

How should we adjust rate?

37

How should we adjust rate?

● At the highest level: fast or slow

37

How should we adjust rate?

● At the highest level: fast or slow

● Fast: multiplicative increase/decrease

● E.g., increase/decrease by 2x (R ! 2R or R/2)

37

How should we adjust rate?

● At the highest level: fast or slow

● Fast: multiplicative increase/decrease

● E.g., increase/decrease by 2x (R ! 2R or R/2)

● Slow: additive increase/decrease

● E.g., increase/decrease by +1 (R! R+1 or R-1)

37

Leads to four alternatives

38

Leads to four alternatives

● AIAD: gentle increase, gentle decrease

● AIMD: gentle increase, rapid decrease

38

Leads to four alternatives

● AIAD: gentle increase, gentle decrease

● AIMD: gentle increase, rapid decrease

● MIAD: rapid increase, gentle decrease

38

Leads to four alternatives

● AIAD: gentle increase, gentle decrease

● AIMD: gentle increase, rapid decrease

● MIAD: rapid increase, gentle decrease

● MIMD: rapid increase, rapid decrease

38

Leads to four alternatives

● AIAD: gentle increase, gentle decrease

● AIMD: gentle increase, rapid decrease

● MIAD: rapid increase, gentle decrease

● MIMD: rapid increase, rapid decrease

39

Why AIMD? Intuition

40

Why AIMD? Intuition

● Consequences of sending too much are worse
than sending too little

● Too much: packets dropped and retransmitted

● Too little: somewhat lower throughput

40

Why AIMD? Intuition

● Consequences of sending too much are worse
than sending too little

● Too much: packets dropped and retransmitted

● Too little: somewhat lower throughput

● General approach:

● Gentle increase when uncongested (exploration)

● Rapid decrease when congested

40

Why AIMD? In more detail...

41

Why AIMD? In more detail...
● Consider a simple model

● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively

41

Why AIMD? In more detail...
● Consider a simple model

● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively

● When X1+X2 > C, network is congested

41

Why AIMD? In more detail...
● Consider a simple model

● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively

● When X1+X2 > C, network is congested
● When X1+X2 < C, network is underloaded 

41

Why AIMD? In more detail...
● Consider a simple model

● Two flows going over single link of capacity C

● Sending at rates X1 and X2 respectively

● When X1+X2 > C, network is congested
● When X1+X2 < C, network is underloaded 

● Would like both:

● X1 + X2 = C ! link is fully utilized with no congestion

● X1 = X2 ! sharing is “fair”

41

Simple Model, C=1

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

1

1

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

1

1

● Two users with
rates x1 and x2

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Efficiency line 
(x1+x2 = 1)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Efficiency line 
(x1+x2 = 1)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

co
ngeste

d !

"

ineffic
ient

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Efficiency line 
(x1+x2 = 1)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

● Unused capacity
when x1+x2 < 1 co

ngeste
d !

"

ineffic
ient

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Fairness line 
(x1 =x2)

Efficiency line 
(x1+x2 = 1)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

● Unused capacity
when x1+x2 < 1 co

ngeste
d !

"

ineffic
ient

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Fairness line 
(x1 =x2)

Efficiency line 
(x1+x2 = 1)

1

1

● Two users with
rates x1 and x2

● Congestion when  
x1+x2 > 1 

● Unused capacity
when x1+x2 < 1

● Fair when x1 =x2

co
ngeste

d !

"

ineffic
ient

Example Allocations, C=1

x1

x 2
fairness

line

efficiency

line

1

1

Example Allocations, C=1

x1

x 2
fairness

line

efficiency

line

1

1

Inefficient: x1+x2=0.7

(0.2, 0.5)

Example Allocations, C=1

x1

x 2
fairness

line

efficiency

line

1

1

Congested: x1+x2=1.2

(0.7, 0.5)

Example Allocations, C=1

x1

x 2
fairness

line

efficiency

line

1

1

Efficient: x1+x2=1

Not fair

(0.7, 0.3)

Example Allocations, C=1

x1

x 2
fairness

line

efficiency

line

1

1
Efficient: x1+x2=1

Fair

(0.5, 0.5)

Example Adjustments

x1

x 2

1

1

(x1, x2)

Example Adjustments

x1

x 2

1

1

(x1, x2)

(x1-a, x2-a)

(x1+b, x2+b)

Example Adjustments

x1

x 2

1

1

(x1, x2)

(x1-a, x2-a)

(x1+b, x2+b)

Line with slope = 1

Example Adjustments

x1

x 2

1

1

(x1, x2)

Example Adjustments

x1

x 2

1

1

(x1, x2)

(cx1, cx2)

(x1/d, x2/d)

Example Adjustments

x1

x 2

1

1

(x1, x2)

(cx1, cx2)

Line with slope = x2/x1

(x1/d, x2/d)

Our Four Options

46

Our Four Options

● AIAD: gentle increase, gentle decrease

● AIMD: gentle increase, rapid decrease

● MIAD: rapid increase, gentle decrease

● MIMD: rapid increase, rapid decrease

● And now apply our simple model!

46

AIAD Dynamics

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion

● X1 → 2, X2 → 4

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion

● X1 → 2, X2 → 4

● Second iteration: congestion

● X1 → 0, X2 → 2

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion

● X1 → 2, X2 → 4

● Second iteration: congestion

● X1 → 0, X2 → 2

● Third iteration: no congestion

● X1 → 1, X2 → 3	 	 	

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion

● X1 → 2, X2 → 4

● Second iteration: congestion

● X1 → 0, X2 → 2

● Third iteration: no congestion

● X1 → 1, X2 → 3	 	 	

● …

AIAD Dynamics

● Consider: Increase: +1	 Decrease: -2 

● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion

● X1 → 2, X2 → 4

● Second iteration: congestion

● X1 → 0, X2 → 2

● Third iteration: no congestion

● X1 → 1, X2 → 3	 	 	

● … Back where we started!  
! Gap between X1 and X2  

didn’t change at all

AIAD
● Increase: x + a
● Decrease: x - b

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

AIAD
● Increase: x + a
● Decrease: x - b

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(x1-b, x2-b)

AIAD
● Increase: x + a
● Decrease: x - b

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(x1-b, x2-b)

(x1-b+a, x2-b+a)

AIAD
● Increase: x + a
● Decrease: x - b

● Does not
converge to
fairness

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(x1-b, x2-b)

(x1-b+a, x2-b+a)

MIMD Dynamics

49

MIMD Dynamics

● Consider: Increase: 2	 Decrease:
 × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5

49

MIMD Dynamics

● Consider: Increase: 2	 Decrease:
 × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5

● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

49

MIMD Dynamics

● Consider: Increase: 2	 Decrease:
 × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5

● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	

49

MIMD Dynamics

● Consider: Increase: 2	 Decrease:
 × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5

● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	

● …
49

MIMD Dynamics

● Consider: Increase: 2	 Decrease:
 × ÷ 4

● Start at X1 = ½, X2 = 1, with C = 5

● First iteration: no congestion

● X1 → 1, X2 → 2

● Second iteration: no congestion

● X1 → 2, X2 → 4

● Third iteration: congestion

● X1 → ½ , X2 → 1	 	

● …
49Again, no improvement in fairness

MIMD
● Increase: x bI×
● Decrease: x

bD

×

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

co
ngeste

d !

"

ineffic
ient

MIMD
● Increase: x bI×
● Decrease: x

bD

×

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bdx1,bdx2)

co
ngeste

d !

"

ineffic
ient

MIMD
● Increase: x bI×
● Decrease: x

bD

×

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bdx1,bdx2)

(bIbDx1, 
bIbDx2)

co
ngeste

d !

"

ineffic
ient

MIMD
● Increase: x bI×
● Decrease: x

bD

×

● Does not
converge to
fairness

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bdx1,bdx2)

(bIbDx1, 
bIbDx2)

co
ngeste

d !

"

ineffic
ient

MIAD Dynamics

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1
● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion; X1 → 2, X2 → 6

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1
● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1
● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
● Third iteration: congestion; X1 → 0, X2 → 4

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1
● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
● Third iteration: congestion; X1 → 0, X2 → 4
● Fourth iteration: no congestion; X1 → 0, X2 → 8 

51

MIAD Dynamics

● Consider: Increase: 2	 Decrease: × −1
● Start at X1 = 1, X2 = 3, with C = 5

● First iteration: no congestion; X1 → 2, X2 → 6
● Second iteration: congestion; X1 → 1, X2 → 5
● Third iteration: congestion; X1 → 0, X2 → 4
● Fourth iteration: no congestion; X1 → 0, X2 → 8 

 X1 pegged at 0; MIAD is maximally unfair!
51

AIMD Dynamics

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5
● Eighth: congestion: X1 ! 1.625, X2 ! 1.75

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5
● Eighth: congestion: X1 ! 1.625, X2 ! 1.75
● Ninth: no congestion: X1 !2.625, X2! 2.75

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5
● Eighth: congestion: X1 ! 1.625, X2 ! 1.75
● Ninth: no congestion: X1 !2.625, X2! 2.75

Diff = 1

AIMD Dynamics
● Consider: Increase: 	 Decrease: + 1 ÷ 2
● Start at X1 = 1, X2 = 2, with C = 5

● First iteration: no congestion: X1 → 2, X2 → 3
● Second: no congestion: X1 → 3, X2 → 4
● Third: congestion: X1 → 1.5, X2 → 2
● Fourth: no congestion: X1 → 2.5, X2 → 3
● Fifth: congestion: X1 ! 1.25, X2 ! 1.5
● Sixth: no congestion: X1 ! 2.25, X2 ! 2.5
● Seventh: no congestion: X1 ! 3.25, X2 ! 3.5
● Eighth: congestion: X1 ! 1.625, X2 ! 1.75
● Ninth: no congestion: X1 !2.625, X2! 2.75

Diff = 1

Diff = 1
Diff = 1

Diff = 0.5
Diff = 0.5

Diff = 0.25
Diff = 0.25
Diff = 0.25

Diff = 0.125
Diff = 0.125

AIMD

● Difference between X1 and X2 decreasing!

● Difference stays constant when increasing

● Halves every time there is a decrease

53

AIMD
● Increase: x+aI

● Decrease: x*bD

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

co
ngeste

d !

"

ineffic
ient

AIMD
● Increase: x+aI

● Decrease: x*bD

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bDx1,bDx2)

co
ngeste

d !

"

ineffic
ient

(bDx1+aI, 
bDx2+aI)

AIMD
● Increase: x+aI

● Decrease: x*bD

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bDx1,bDx2)

co
ngeste

d !

"

ineffic
ient

(bDx1+aI, 
bDx2+aI)

AIMD
● Increase: x+aI

● Decrease: x*bD

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bDx1,bDx2)

co
ngeste

d !

"

ineffic
ient

(bDx1+aI, 
bDx2+aI)

AIMD
● Increase: x+aI

● Decrease: x*bD

● Converges to
fairness

User 1: x1

U
se

r 2
: x

2

fairness

line

efficiency

line

(x1,x2)

(bDx1,bDx2)

co
ngeste

d !

"

ineffic
ient

Answer to Why AIMD?

55

Answer to Why AIMD?

● AIMD embodies gentle increase, rapid decrease

55

Answer to Why AIMD?

● AIMD embodies gentle increase, rapid decrease

● AIMD only choice that drives us towards “fairness”

55

Answer to Why AIMD?

● AIMD embodies gentle increase, rapid decrease

● AIMD only choice that drives us towards “fairness”

● Out of the four options

● AIAD, MIMD: retain unfairness

● MIAD: maximally unfair

● AIMD: fair and appropriate gentle/rapid actions

55

Any Questions?

56

Sketch of a solution

Sketch of a solution

Each source independently runs the following:

Sketch of a solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some time period

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

Sketch of TCP’s solution

Each source independently runs the following:

● Pick initial rate R

● Try sending at a rate R for some time period

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

Sketch of TCP’s solution

Each source independently runs the following:

● Slow-start to find initial rate

● Try sending at a rate R for some time period

● Did I experience congestion in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

Sketch of TCP’s solution

Each source independently runs the following:

● Slow-start to find initial rate

● Try sending at a rate R for some time period

● Did I experience congestion loss in this time period?

▪ If yes, reduce R

▪ If no, increase R

● Repeat

Sketch of TCP’s solution

Each source independently runs the following:

● Slow-start to find initial rate

● Try sending at a rate R for some time period

● Did I experience congestion loss in this time period?

▪ If yes, reduce R multiplicatively (2x)

▪ If no, increase R additively (+1)

● Repeat

Review:

● Sender maintains a window of packets in flight

● Window size W is picked to balance three goals

● Take advantage of network capacity (“fill the pipe”)

● Avoid overloading the receiver (flow control)

● Avoid overloading links (congestion control)

Review:

● Sender maintains a window of packets in flight

● Window size W is picked to balance three goals
● Take advantage of network capacity (“fill the pipe”)
● Avoid overloading the receiver (flow control)
● Avoid overloading links (congestion control)

Review:

● Sender maintains a window of packets in flight

● Window size W is picked to balance three goals
● Take advantage of network capacity (“fill the pipe”)
● Avoid overloading the receiver (flow control)
● Avoid overloading links (congestion control)

● Flow control: sender maintains an advertised window;
denoted RWND (for receiver window) 

Review:

● Sender maintains a window of packets in flight

● Window size W is picked to balance three goals
● Take advantage of network capacity (“fill the pipe”)
● Avoid overloading the receiver (flow control)
● Avoid overloading links (congestion control)

● Flow control: sender maintains an advertised window;
denoted RWND (for receiver window) 

● CC: sender maintains a congestion window (CWND)

All These Windows…

All These Windows…

● Congestion Window: CWND

● How many bytes can be sent without overloading links

● Computed by the sender using a CC algorithm

All These Windows…

● Congestion Window: CWND

● How many bytes can be sent without overloading links

● Computed by the sender using a CC algorithm

● Flow control window: RWND

● How many bytes can be sent without overflowing the

receiver’s buffers

● Implemented by having the receiver tell the sender

All These Windows…

● Congestion Window: CWND

● How many bytes can be sent without overloading links

● Computed by the sender using a CC algorithm

● Flow control window: RWND

● How many bytes can be sent without overflowing the

receiver’s buffers

● Implemented by having the receiver tell the sender

● Sender-side window = min{CWND, RWND}

● Assume for this lecture that RWND > CWND

Note

● Recall: TCP operates on bytestreams

● Hence, real implementations maintain CWND in bytes

● This lecture will talk about CWND in units of MSS

● MSS: Maximum Segment Size, the max number of bytes of data that

one TCP packet can carry in its payload

● This is only for pedagogical purposes

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

sent & ACKed

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

sent & ACKed
 Not yet
transmitted

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

Sender maintains a single timer, for the LHS of window

Review:

Sender maintains a sliding window of W contiguous bytes

i i + W

Sender maintains a single timer, for the LHS of window

On timeout, sender retransmits the packet starting at i

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs

i i + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs

i i + W

Fast Retransmit: Sender retransmits when #dupACKs = 3

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs

i i + W

Fast Retransmit: Sender retransmits when #dupACKs = 3
Sender slides window on receiving an ACK for new data (j > i)

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Review:

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (j > i)

j j + W

Sketch of TCP’s solution

Each source independently runs the following:

● Slow-start to find initial rate

● Try sending at a rate R for some time period

● Did I experience congestion loss in this time period?

▪ If yes, reduce R multiplicatively (2x)

▪ If no, increase R additively (+1)

● Repeat

Sketch of TCP’s solution

Each source independently runs the following:

● Slow-start to find initial rate

● Try sending at a rate R for some time period

● Did I experience congestion loss in this time period?

▪ If yes, reduce R multiplicatively (2x)

▪ If no, increase R additively (+1)

● Repeat

Extending TCP with CC

Extending TCP with CC

● Add a congestion window parameter (CWND) 

Extending TCP with CC

● Add a congestion window parameter (CWND) 

● When RWND > CWND, the sender’s rate is CWND/RTT 

Extending TCP with CC

● Add a congestion window parameter (CWND) 

● When RWND > CWND, the sender’s rate is CWND/RTT 

● Adapting CWND ! adapting sender’s rate

Recall: how we adapt rate

● Detecting congestion

● Loss-based

● Discovering an initial rate

● Slow start

● Adapting rate to congestion (or lack thereof)

● AIMD 

Updating CWND  
(to implement slow-start and AIMD)

Updating CWND  
(to implement slow-start and AIMD)

● CWND updates are event driven

Updating CWND  
(to implement slow-start and AIMD)

● CWND updates are event driven

● Three types of events relevant to CC

● New ACK

● k(=3) duplicate ACKs

● Timeout

Adapting CWND based on events

Adapting CWND based on events

● New ACK ! increase CWND (based on slow-start or AIMD)

● Indicates no congestion was encountered

Adapting CWND based on events

● New ACK ! increase CWND (based on slow-start or AIMD)

● Indicates no congestion was encountered

● 3 dupACKs ! decrease CWND (based on AIMD)

● Indicates isolated loss 

Adapting CWND based on events

● New ACK ! increase CWND (based on slow-start or AIMD)

● Indicates no congestion was encountered

● 3 dupACKs ! decrease CWND (based on AIMD)

● Indicates isolated loss 

● Timeout ! rediscover a good CWND (return to slow-start)

● Indicates loss of several packets. Bad news!

Adapting CWND based on events

● New ACK ! increase CWND (based on slow-start or AIMD)

● Indicates no congestion was encountered

● 3 dupACKs ! decrease CWND (based on AIMD)

● Indicates isolated loss 

● Timeout ! rediscover a good CWND (return to slow-start)

● Indicates loss of several packets. Bad news!

● Let’s take a closer look at how this is implemented...

How TCP Implements Slow Start

● Sender starts at a slow rate; increases rate
exponentially until first loss 

How TCP Implements Slow Start

● Sender starts at a slow rate; increases rate
exponentially until first loss 

● In TCP: start with a small CWND = 1 (MSS)
● So, initial sending rate is MSS/RTT 

How TCP Implements Slow Start

● Sender starts at a slow rate; increases rate
exponentially until first loss 

● In TCP: start with a small CWND = 1 (MSS)
● So, initial sending rate is MSS/RTT 

● Then double CWND every RTT until first loss 

How TCP Implements Slow Start

● Sender starts at a slow rate; increases rate
exponentially until first loss 

● In TCP: start with a small CWND = 1 (MSS)
● So, initial sending rate is MSS/RTT 

● Then double CWND every RTT until first loss 

● Implemented as: On each ACK: CWND += 1 (MSS)

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

Src

Dest

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1

Src

Dest

CWND=1

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1

Src

Dest

CWND=1 CWND=2

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3

Src

Dest

CWND=1 CWND=2

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2

Src

Dest

CWND=1 CWND=2 CWND=3

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2

Src

Dest

CWND=1 CWND=2 CWND=3

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2

Src

Dest

CWND=1 CWND=2 CWND=3

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 D4 D5

Src

Dest

CWND=1 CWND=2 CWND=3

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

CWND=1 CWND=2 CWND=3 CWND=4

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

CWND=1 CWND=2 CWND=3 CWND=4

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

D6 D7

CWND=1 CWND=2 CWND=3 CWND=4

Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

D6 D7

CWND=1

A4 A5 A6 A7

CWND=2 CWND=3 CWND=4 ... CWND=8

How TCP Implements Slow Start  
(contd.)

● Double CWND every RTT until first loss

How TCP Implements Slow Start  
(contd.)

● Double CWND every RTT until first loss

● Introduce a “slow start threshold” parameter
● SSTHRESH, used to remember last “safe” rate 

How TCP Implements Slow Start  
(contd.)

● Double CWND every RTT until first loss

● Introduce a “slow start threshold” parameter
● SSTHRESH, used to remember last “safe” rate 

● On first loss: SSTHRESH = CWND/2

AIMD in TCP

● Additive increase:

● No loss ! increase CWND by 1 MSS every RTT

Implementing Additive Increase

Implementing Additive Increase
● Implementation works by adding a fraction of an  

MSS every time we receive an ACK 

Implementing Additive Increase
● Implementation works by adding a fraction of an  

MSS every time we receive an ACK 

● On receiving an ACK (for new data)

●

● if counting CWND

in bytes

𝐶𝑊𝑁𝐷 → 𝐶𝑊𝑁𝐷 +
1

𝐶𝑊𝑁𝐷

𝐶𝑊𝑁𝐷 → 𝐶𝑊𝑁𝐷 + 𝑀𝑆𝑆 ×
𝑀𝑆𝑆

𝐶𝑊𝑁𝐷

Implementing Additive Increase
● Implementation works by adding a fraction of an  

MSS every time we receive an ACK 

● On receiving an ACK (for new data)

●

● if counting CWND

in bytes

𝐶𝑊𝑁𝐷 → 𝐶𝑊𝑁𝐷 +
1

𝐶𝑊𝑁𝐷

𝐶𝑊𝑁𝐷 → 𝐶𝑊𝑁𝐷 + 𝑀𝑆𝑆 ×
𝑀𝑆𝑆

𝐶𝑊𝑁𝐷

● NOTE: after full window, CWND increases by 1 MSS

● Thus, CWND increases by 1 MSS per RTT

AIMD in TCP

● Additive increase:
● No loss ! increase CWND by 1 MSS every RTT

AIMD in TCP

● Additive increase:
● No loss ! increase CWND by 1 MSS every RTT

● Multiplicative decrease
● Loss detected by 3 dupACKs ! divide CWND in half

Implementing Multiplicative Decrease

Implementing Multiplicative Decrease

● On receiving 3rd dupACK:

● 𝐶𝑊𝑁𝐷 →
𝐶𝑊𝑁𝐷

2

On Timeout

80

On Timeout

● Rationale: lost multiple packets in a window

● Current CWND may be way off

● Hence, need to rediscover a good rate from scratch

● Design decision that errs on the side of caution

80

On Timeout

● Rationale: lost multiple packets in a window

● Current CWND may be way off

● Hence, need to rediscover a good rate from scratch

● Design decision that errs on the side of caution

● Hence, on timeout:

● Set SSTHRESH ←

● Set CWND ← 1 MSS & enter Slow Start mode

𝐶𝑊𝑁𝐷
2

80

Slow-Start vs. AIMD

● When does a sender stop Slow-Start and start
Additive Increase?

Slow-Start vs. AIMD

● When does a sender stop Slow-Start and start
Additive Increase?

● Determined by SSTHRESH

Slow-Start vs. AIMD

● When does a sender stop Slow-Start and start
Additive Increase?

● Determined by SSTHRESH

● When CWND > SSTHRESH, sender switches
from slow-start to AIMD’s additive increase

Recap: TCP congestion control

● Detecting congestion

● Loss-based

● Discovering an initial rate

● Slow start

● Adapting rate to congestion (or lack thereof)

● AIMD 

TCP implements the above by updating

 CWND on ACK arrivals and timeouts

Next Time

● TCP: reliability and CC together

● Analyzing TCP

● Router-assisted CC

BACKUP

Note: TCP is “ACK Clocked”

Note: TCP is “ACK Clocked”

● A new ACK advances the sliding window and lets a
new data segment enter the network

● I.e., ACKs “clock” data segments

● What’s the benefit of ACK clocking?

ACK Clocking

Src DstR1 R2
10Gbps 1Gbps 10Gbps

ACK Clocking

Src Dst

ACK Clocking

Src Dst

Consider: source sends a burst of packets

ACK Clocking

Src Dst

Consider: source sends a burst of packets

ACK Clocking

Src Dst

Packets are queued and “spread out” at slow link

ACK Clocking

Src Dst

ACK Clocking

Src Dst

ACKs maintain the spread on the return path

ACK Clocking

Src Dst

ACKs maintain the spread on the return path

ACK Clocking

Src Dst

ACKs maintain the spread on the return path

ACK Clocking

Src Dst

Sender clocks new packets with the spread

ACK Clocking

Src Dst

Sender clocks new packets with the spread

ACK Clocking

Src Dst

Sender clocks new packets with the spread

Now sending without queuing at the bottleneck link!

