1 True False

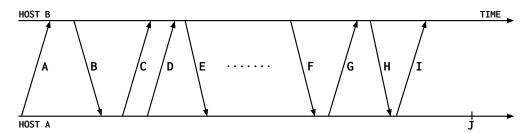
- 1. UDP uses congestion control.
- 2. Flow control slows down the sender when the network is congested.
- 3. For TCP timer implementations, every time the sender receives an ACK for a previously unACKed packet, it will recalculate ETO.
- 4. CWND (congestion window) is usually smaller than RWND (receiver window).
- 5. AIMD is the only "fair" option among MIMD, AIAD, MIAD, and AIMD.

2 Impact of Fast Recovery

Consider a TCP connection, which is currently in Congestion Avoidance (AIMD).

- The last ACK sequence number was 101.
- The CWND size is 10 (in packets).
- The packets #101-110 were sent at $t=0,0.1,\ldots,0.9$ (sec), respectively.
- The packet #102 is lost only for its first transmission.
- RTT is 1 second.

Fill in the tables below, until the sender transmits the packet #116.


- 1. Without fast recovery:
 - On new ACK, $CWND+ = \frac{1}{\lfloor CWND \rfloor}$
 - On triple dupACKs, $SSTHRESH = \left| \frac{CWND}{2} \right|$, then CWND = SSTHRESH.

Time (sec)	Receive ACK (due to)	CWND	Transmit Seq # (mark retransmits)
1.0	102 (101)	$10 + \frac{1}{10} = 10.1$	111
1.2	102 (103)	10.1	/
1.3	102 (104)	10.1	/

- 2. With fast recovery:
 - On triple dupACKs, $SSTHRESH = \left\lfloor \frac{CWND}{2} \right\rfloor$, then CWND = SSTHRESH + 3, enter fast recovery.
 - In fast recovery, CWND+=1 on every dupACK.
 - On new ACK, exit fast recovery, *CWND* = *SSTHRESH*

Time (sec)	Receive ACK (due to)	CWND	Transmit Seq # (mark retransmits)
1.0	102 (101)	$10 + \frac{1}{10} = 10.1$	111
1.2	102 (103)	10.1	/
1.3	102 (104)	10.1	/

3 Flags

The above figure shows the life cycle of a TCP connection with normal termination - that is, connection establishment, data exchange, and teardown.

1. For each of the arrows, choose whether it is a SYN, ACK, data, FIN or RST packet. A single arrow might have more than one of these flags set.

A:

D:

G:

B:

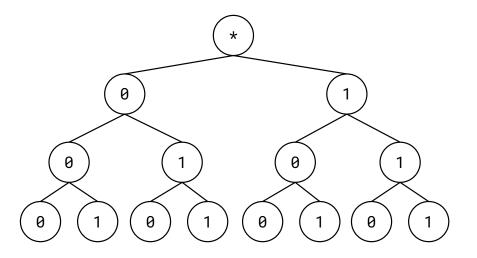
E:

H:

C:

F:

I:


2. When host A sends packet I, it sets a timer that ends at point J. What is the purpose of this timeout?

4 Midterm Review: Longest Prefix Matching

Your routing table contains the following entries:

Address	Port
01*	Port 1
000	Port 2
001	Port 1
1**	Port 2
101	Port 1

Mark the entries on the following tree. Then, find a more concise representation of the table.

Concise Table:*

Address	Port

^{*}You may not need to fill in all rows.