
CS 168	Introduction to the Internet: Architectur	e and Protocols
Spring 2024	Sylvia Ratnasamy & Rob Shakir	Discussion 3: Routing

1 Distance-Vector Routing

The nodes in the above network share routes with each other using distance-vector routing. Below are the initial routing tables for each node, and a table showing the costs for each of their neighboring links. Links without a distance provided have an implicit distance of **1**.

S4				
Dest.	NextHop, Dist.			
D	Direct, 1			

The following questions indicate events that happen consecutively. You can assume that no other events occur other than the ones specified. Note that all blanks may not be necessary.

EVENT: S3 advertises its routes to S1 and S4.

1. What do the routing tables for *S*1 and *S*4 look like after receiving *S*3's routes? (You may not need to fill in all the rows)

	Dest.	NextHop, Dist.		Dest.	NextHop, Dist.
	A	Direct, 1		D	Direct, 1
S1	С	S 3, 2	S4	С	S 3, 3

2. Which nodes among *S*1 and *S*4 are expected to advertise their routes after receiving *S*3's routes? (Assuming the advertising routes on a routing table change optimization is being used)

Solution: Since both *S*1 and *S*4 updated their shortest paths, they will both advertise their routing tables.

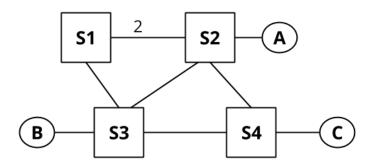
EVENT: S1 advertises its routes to S2, S3, and S4.

3. What do the routing tables for *S*2, *S*3, and *S*4 look like after receiving *S*1's routes? (You may not need to fill in all columns)

	Dest.	NextHop, Dist.		Dest.	NextHop, Dist.		Dest.	NextHop, Dist.
	В	Direct, 1		С	Direct, 1		D	Direct, 1
S2	A	S 1, 3	S3	A	S 1, 2	S4	С	\$3, 3
	С	S1, 4					Α	S 1, 8

EVENT: S4 advertises its routes to S1 and S3. EVENT: S1 advertises its routes to S2, S3, and S4.

4. At this point, what path does S2 use to reach D, and what is the cost?


Solution: $S2 \rightarrow S1 \rightarrow S4$ with a cost of 10. S1 has only heard about a route to *D* from S4. S1 in turn advertises this route to S2. **EVENT:** S3 advertises its routes to S1 and S4.

5. What do the routing tables for S1 and S2 look like now?

	Dest.	NextHop, Dist.		Dest.	NextHop, Dist.
	A	Direct, 1	1	В	Direct, 1
S1	С	S3, 2	S2	Α	S 1, 3
	D	S3, 4		С	S 1, 4
]	D	S 1, 10

Solution: S2 has not heard about S3's routing update to S1 about a lower cost route to D yet

2 Split Horizon and Poisoned Reverse

All unlabeled links have a cost of 1. The parts of the question do not build on each other.

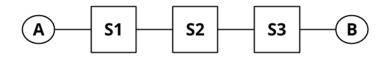
1. Assume that the routers use **split horizon**. Say that S4 advertises (A: 2, C: 1) to S3. Assuming that S3 has received no other advertisements, what does S3 now tell S4 about S3's path to A?

Solution: Nothing. Split Horizon means that we never tell a neighbor about paths that go through that neighbor. So in this case, *S3* doesn't tell *S4* about its path to *A*.

2. Assume that the routers use **poisoned reverse**. Routing tables have not converged and *S*3 believes its shortest path to *A* is through *S*1 (this path is *S*3-*S*1-*S*2 of length 4). *S*3 advertises its routes to *S*4. Now,

S4 advertises to S3. S4 bases this advertisement off of it's routing table which has: (B: 2, A: 2, C: 1). After recomputing its routes, S3 advertises its routes to S4. What is the advertised distance to A?

Solution: *S*3 will tell *S*4 that its distance to *A* is infinitely long, because *S*3's new shortest route goes through *S*4.


3. Consider the simple topology (*A*-*S*1-*S*2-*S*3). After the routing tables have converged, link *S*1-*S*2 goes down. When *S*2 advertises to *S*3 (*A*: ∞), is this an act of **poisoning a route** or **poisoned reverse**?

Solution: S2 is **poisoning a route**. Namely, it tells S3 that its distance is ∞ , not because S2's new path goes through S3, but because S2 actually has no route now.

4. **Poisoning a route** and **poisoned reverse** might sound similar, but actually we can think of one of them as being "honest" while the other one is "lying." Which one tells the truth, and which one tells a white lie to keep the network functioning?

Solution: Poisoned reverse encourages routers to tell a white lie. With poisoned reverse, we tell a neighbor that we have no path to a certain destination if our path goes through that neighbor. Since we actually do have a path, our message is not strictly true. On the other hand, **poisoning a route** happens when a link goes down, and we actually lose our path to some destination. Thus, we're telling the truth when we advertise a distance of ∞ to this destination (given that a infinitely long path is equivalent to no path).

3 Count to Infinity (Guided Q)

- 1. For part 1 of this question there is **no** split-horizon or poisoned reverse, and advertisements are only sent periodically (aka when it is explicitly stated).
 - (a) What do the routing tables look like once *S*1, *S*2 and *S*3 converge?

S 1		S2			S 3		
Dest.	NextHop, Dist.	Dest.	NextHop, Dist.		Dest.	NextHop, Dist.	
A	Direct, 1	A	<i>S</i> 1,2		В	Direct, 1	
B	<i>S</i> 2,3	В	\$3,2		Α	<i>S</i> 2,3	

(b) What periodic advertisement will *S*1 and *S*2 send to each other? (One such message is given as an example)

From	То	(Destination, Distance)
<i>S</i> 1	<i>S</i> 2	(A,1)
<i>S</i> 1	<u>S2</u>	(B ,3)
<u>S2</u>	S 1	(A,2)
<i>S</i> 2	<i>S</i> 1	(<i>B</i> ,2)

- **EVENT**: *The link between S2 and S3 goes down.*
- (c) What will S1 and S2 send to each other?

From	То	(Destination, Distance)
<i>S</i> 1	<u>S</u> 2	(A,1)
<u>S1</u>	<u>S</u> 2	(<i>B</i> ,3)
<u>S2</u>	S 1	(A,2)
<i>S</i> 2	S 1	(<i>B</i> ,2)

Solution: (The tables did not change because no routes have expired yet.

EVENT: *S2's route to B finally expires* (d) After *S*1 and *S*2 exchange advertisements again, what will their routing tables look like?

S 1				S2
Dest.	NextHop, Dist.		Dest.	NextHop, Dist.
A	Direct, 1		A	<i>S</i> 1,2
B	\$2,3		В	<i>S</i> 1,4

EVENT: *S*1's route to *B* expires

(e) After S1 and S2 exchange advertisements again, what will their routing tables look like?

	S1		S2
Dest.	NextHop, Dist.	Dest.	NextHop, Dist.
Α	Direct, 1	A	<i>S</i> 1,2
В	<i>S</i> 2,5	B	<i>S</i> 1,4

- (f) Is this good? Solution: NO! This is called count to infinity. Both switches think they have a path to B for a long time after the path ceases to exist.
- 2. For part 2 of this question there is **split-horizon**, but **no** poisoned reverse and advertisements are only sent periodically (aka when it is explicitly stated). Also, all dropped links are back up and the routing state starts out converged!
 - (a) What will S1 and S2 send to each other after everything has converged?

From	То	(Destination, Distance)
<i>S</i> 1	<u>S</u> 2	(A,1)
<u>S2</u>	<i>S</i> 1	(<i>B</i> ,2)

EVENT: The link between S2 and S3 goes down. (b) What will S1 and S2 send to each other?

From	То	(Destination, Distance)
<i>S</i> 1	<i>S</i> 2	(A,1)
<u>S2</u>	<i>S</i> 1	(<i>B</i> ,2)

EVENT: S2's route to B finally expires

(c) After S1 and S2 exchange advertisements again, what will their routing tables look like?

S 1			S 2		
Dest.	NextHop, Dist.		Dest.	NextHop, Dist.	
Α	Direct, 1		Α	<i>S</i> 1,2	
В	\$2,3				

(d) Will this end well?

Solution: Yep! *S*1's route to *B* will expire because it has not been updated in a while.